Cargando…

The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis

Given the plasticity of hematopoietic stem and progenitor cells, multiple routes of differentiation must be blocked in the the pathogenesis of acute myeloid leukemia, the molecular basis of which is incompletely understood. We report that posttranscriptional repression of the transcription factor AR...

Descripción completa

Detalles Bibliográficos
Autores principales: Alejo-Valle, Oriol, Weigert, Karoline, Bhayadia, Raj, Ng, Michelle, Issa, Hasan, Beyer, Christoph, Emmrich, Stephan, Schuschel, Konstantin, Ihling, Christian, Sinz, Andrea, Zimmermann, Martin, Wickenhauser, Claudia, Flasinski, Marius, Regenyi, Eniko, Labuhn, Maurice, Reinhardt, Dirk, Yaspo, Marie-Laure, Heckl, Dirk, Klusmann, Jan-Henning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Hematology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632760/
https://www.ncbi.nlm.nih.gov/pubmed/34570885
http://dx.doi.org/10.1182/blood.2021012231
_version_ 1784824104601255936
author Alejo-Valle, Oriol
Weigert, Karoline
Bhayadia, Raj
Ng, Michelle
Issa, Hasan
Beyer, Christoph
Emmrich, Stephan
Schuschel, Konstantin
Ihling, Christian
Sinz, Andrea
Zimmermann, Martin
Wickenhauser, Claudia
Flasinski, Marius
Regenyi, Eniko
Labuhn, Maurice
Reinhardt, Dirk
Yaspo, Marie-Laure
Heckl, Dirk
Klusmann, Jan-Henning
author_facet Alejo-Valle, Oriol
Weigert, Karoline
Bhayadia, Raj
Ng, Michelle
Issa, Hasan
Beyer, Christoph
Emmrich, Stephan
Schuschel, Konstantin
Ihling, Christian
Sinz, Andrea
Zimmermann, Martin
Wickenhauser, Claudia
Flasinski, Marius
Regenyi, Eniko
Labuhn, Maurice
Reinhardt, Dirk
Yaspo, Marie-Laure
Heckl, Dirk
Klusmann, Jan-Henning
author_sort Alejo-Valle, Oriol
collection PubMed
description Given the plasticity of hematopoietic stem and progenitor cells, multiple routes of differentiation must be blocked in the the pathogenesis of acute myeloid leukemia, the molecular basis of which is incompletely understood. We report that posttranscriptional repression of the transcription factor ARID3A by miR-125b is a key event in the pathogenesis of acute megakaryoblastic leukemia (AMKL). AMKL is frequently associated with trisomy 21 and GATA1 mutations (GATA1s), and children with Down syndrome are at a high risk of developing the disease. The results of our study showed that chromosome 21–encoded miR-125b synergizes with Gata1s to drive leukemogenesis in this context. Leveraging forward and reverse genetics, we uncovered Arid3a as the main miR-125b target behind this synergy. We demonstrated that, during normal hematopoiesis, this transcription factor promotes megakaryocytic differentiation in concert with GATA1 and mediates TGFβ-induced apoptosis and cell cycle arrest in complex with SMAD2/3. Although Gata1s mutations perturb erythroid differentiation and induce hyperproliferation of megakaryocytic progenitors, intact ARID3A expression assures their megakaryocytic differentiation and growth restriction. Upon knockdown, these tumor suppressive functions are revoked, causing a blockade of dual megakaryocytic/erythroid differentiation and subsequently of AMKL. Inversely, restoring ARID3A expression relieves the arrest of megakaryocytic differentiation in AMKL patient-derived xenografts. This work illustrates how mutations in lineage-determining transcription factors and perturbation of posttranscriptional gene regulation can interact to block multiple routes of hematopoietic differentiation and cause leukemia. In AMKL, surmounting this differentiation blockade through restoration of the tumor suppressor ARID3A represents a promising strategy for treating this lethal pediatric disease.
format Online
Article
Text
id pubmed-9632760
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society of Hematology
record_format MEDLINE/PubMed
spelling pubmed-96327602022-11-04 The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis Alejo-Valle, Oriol Weigert, Karoline Bhayadia, Raj Ng, Michelle Issa, Hasan Beyer, Christoph Emmrich, Stephan Schuschel, Konstantin Ihling, Christian Sinz, Andrea Zimmermann, Martin Wickenhauser, Claudia Flasinski, Marius Regenyi, Eniko Labuhn, Maurice Reinhardt, Dirk Yaspo, Marie-Laure Heckl, Dirk Klusmann, Jan-Henning Blood Plenary Paper Given the plasticity of hematopoietic stem and progenitor cells, multiple routes of differentiation must be blocked in the the pathogenesis of acute myeloid leukemia, the molecular basis of which is incompletely understood. We report that posttranscriptional repression of the transcription factor ARID3A by miR-125b is a key event in the pathogenesis of acute megakaryoblastic leukemia (AMKL). AMKL is frequently associated with trisomy 21 and GATA1 mutations (GATA1s), and children with Down syndrome are at a high risk of developing the disease. The results of our study showed that chromosome 21–encoded miR-125b synergizes with Gata1s to drive leukemogenesis in this context. Leveraging forward and reverse genetics, we uncovered Arid3a as the main miR-125b target behind this synergy. We demonstrated that, during normal hematopoiesis, this transcription factor promotes megakaryocytic differentiation in concert with GATA1 and mediates TGFβ-induced apoptosis and cell cycle arrest in complex with SMAD2/3. Although Gata1s mutations perturb erythroid differentiation and induce hyperproliferation of megakaryocytic progenitors, intact ARID3A expression assures their megakaryocytic differentiation and growth restriction. Upon knockdown, these tumor suppressive functions are revoked, causing a blockade of dual megakaryocytic/erythroid differentiation and subsequently of AMKL. Inversely, restoring ARID3A expression relieves the arrest of megakaryocytic differentiation in AMKL patient-derived xenografts. This work illustrates how mutations in lineage-determining transcription factors and perturbation of posttranscriptional gene regulation can interact to block multiple routes of hematopoietic differentiation and cause leukemia. In AMKL, surmounting this differentiation blockade through restoration of the tumor suppressor ARID3A represents a promising strategy for treating this lethal pediatric disease. American Society of Hematology 2022-02-03 /pmc/articles/PMC9632760/ /pubmed/34570885 http://dx.doi.org/10.1182/blood.2021012231 Text en © 2022 by The American Society of Hematology This article is made available via the PMC Open Access Subset for unrestricted reuse and analyses in any form or by any means with acknowledgment of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.
spellingShingle Plenary Paper
Alejo-Valle, Oriol
Weigert, Karoline
Bhayadia, Raj
Ng, Michelle
Issa, Hasan
Beyer, Christoph
Emmrich, Stephan
Schuschel, Konstantin
Ihling, Christian
Sinz, Andrea
Zimmermann, Martin
Wickenhauser, Claudia
Flasinski, Marius
Regenyi, Eniko
Labuhn, Maurice
Reinhardt, Dirk
Yaspo, Marie-Laure
Heckl, Dirk
Klusmann, Jan-Henning
The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis
title The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis
title_full The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis
title_fullStr The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis
title_full_unstemmed The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis
title_short The megakaryocytic transcription factor ARID3A suppresses leukemia pathogenesis
title_sort megakaryocytic transcription factor arid3a suppresses leukemia pathogenesis
topic Plenary Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632760/
https://www.ncbi.nlm.nih.gov/pubmed/34570885
http://dx.doi.org/10.1182/blood.2021012231
work_keys_str_mv AT alejovalleoriol themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT weigertkaroline themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT bhayadiaraj themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT ngmichelle themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT issahasan themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT beyerchristoph themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT emmrichstephan themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT schuschelkonstantin themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT ihlingchristian themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT sinzandrea themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT zimmermannmartin themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT wickenhauserclaudia themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT flasinskimarius themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT regenyieniko themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT labuhnmaurice themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT reinhardtdirk themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT yaspomarielaure themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT heckldirk themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT klusmannjanhenning themegakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT alejovalleoriol megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT weigertkaroline megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT bhayadiaraj megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT ngmichelle megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT issahasan megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT beyerchristoph megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT emmrichstephan megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT schuschelkonstantin megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT ihlingchristian megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT sinzandrea megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT zimmermannmartin megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT wickenhauserclaudia megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT flasinskimarius megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT regenyieniko megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT labuhnmaurice megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT reinhardtdirk megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT yaspomarielaure megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT heckldirk megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis
AT klusmannjanhenning megakaryocytictranscriptionfactorarid3asuppressesleukemiapathogenesis