Cargando…

BTK kinase activity is dispensable for the survival of diffuse large B-cell lymphoma

Inhibitors targeting Bruton's tyrosine kinase (BTK) have revolutionized the treatment for various B-cell malignancies but are limited by acquired resistance after prolonged treatment as a result of mutations in BTK. Here, by a combination of structural modeling, in vitro assays, and deep phosph...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Hongwei, Zhu, Yutong, Cheng, Yalong, Hou, Junjie, Jin, Fengjiao, Li, Menglin, Jia, Wei, Cheng, Zhenzhen, Xing, Haimei, Liu, Mike, Han, Ting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636578/
https://www.ncbi.nlm.nih.gov/pubmed/36183831
http://dx.doi.org/10.1016/j.jbc.2022.102555
Descripción
Sumario:Inhibitors targeting Bruton's tyrosine kinase (BTK) have revolutionized the treatment for various B-cell malignancies but are limited by acquired resistance after prolonged treatment as a result of mutations in BTK. Here, by a combination of structural modeling, in vitro assays, and deep phospho-tyrosine proteomics, we demonstrated that four clinically observed BTK mutations—C481F, C481Y, C481R, and L528W—inactivated BTK kinase activity both in vitro and in diffused large B-cell lymphoma (DLBCL) cells. Paradoxically, we found that DLBCL cells harboring kinase-inactive BTK exhibited intact B cell receptor (BCR) signaling, unperturbed transcription, and optimal cellular growth. Moreover, we determined that DLBCL cells with kinase-inactive BTK remained addicted to BCR signaling and were thus sensitive to targeted BTK degradation by the proteolysis-targeting chimera. By performing parallel genome-wide CRISPR-Cas9 screening in DLBCL cells with WT or kinase-inactive BTK, we discovered that DLBCL cells with kinase-inactive BTK displayed increased dependence on Toll-like receptor 9 (TLR9) for their growth and/or survival. Our study demonstrates that the kinase activity of BTK is not essential for oncogenic BCR signaling and suggests that BTK’s noncatalytic function is sufficient to sustain the survival of DLBCL.