Cargando…

Structural basis for HflXr-mediated antibiotic resistance in Listeria monocytogenes

HflX is a ubiquitous bacterial GTPase that splits and recycles stressed ribosomes. In addition to HflX, Listeria monocytogenes contains a second HflX homolog, HflXr. Unlike HflX, HflXr confers resistance to macrolide and lincosamide antibiotics by an experimentally unexplored mechanism. Here, we hav...

Descripción completa

Detalles Bibliográficos
Autores principales: Koller, Timm O, Turnbull, Kathryn J, Vaitkevicius, Karolis, Crowe-McAuliffe, Caillan, Roghanian, Mohammad, Bulvas, Ondřej, Nakamoto, Jose A, Kurata, Tatsuaki, Julius, Christina, Atkinson, Gemma C, Johansson, Jörgen, Hauryliuk, Vasili, Wilson, Daniel N
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638945/
https://www.ncbi.nlm.nih.gov/pubmed/36300626
http://dx.doi.org/10.1093/nar/gkac934
_version_ 1784825534400692224
author Koller, Timm O
Turnbull, Kathryn J
Vaitkevicius, Karolis
Crowe-McAuliffe, Caillan
Roghanian, Mohammad
Bulvas, Ondřej
Nakamoto, Jose A
Kurata, Tatsuaki
Julius, Christina
Atkinson, Gemma C
Johansson, Jörgen
Hauryliuk, Vasili
Wilson, Daniel N
author_facet Koller, Timm O
Turnbull, Kathryn J
Vaitkevicius, Karolis
Crowe-McAuliffe, Caillan
Roghanian, Mohammad
Bulvas, Ondřej
Nakamoto, Jose A
Kurata, Tatsuaki
Julius, Christina
Atkinson, Gemma C
Johansson, Jörgen
Hauryliuk, Vasili
Wilson, Daniel N
author_sort Koller, Timm O
collection PubMed
description HflX is a ubiquitous bacterial GTPase that splits and recycles stressed ribosomes. In addition to HflX, Listeria monocytogenes contains a second HflX homolog, HflXr. Unlike HflX, HflXr confers resistance to macrolide and lincosamide antibiotics by an experimentally unexplored mechanism. Here, we have determined cryo-EM structures of L. monocytogenes HflXr-50S and HflX-50S complexes as well as L. monocytogenes 70S ribosomes in the presence and absence of the lincosamide lincomycin. While the overall geometry of HflXr on the 50S subunit is similar to that of HflX, a loop within the N-terminal domain of HflXr, which is two amino acids longer than in HflX, reaches deeper into the peptidyltransferase center. Moreover, unlike HflX, the binding of HflXr induces conformational changes within adjacent rRNA nucleotides that would be incompatible with drug binding. These findings suggest that HflXr confers resistance using an allosteric ribosome protection mechanism, rather than by simply splitting and recycling antibiotic-stalled ribosomes.
format Online
Article
Text
id pubmed-9638945
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-96389452022-11-07 Structural basis for HflXr-mediated antibiotic resistance in Listeria monocytogenes Koller, Timm O Turnbull, Kathryn J Vaitkevicius, Karolis Crowe-McAuliffe, Caillan Roghanian, Mohammad Bulvas, Ondřej Nakamoto, Jose A Kurata, Tatsuaki Julius, Christina Atkinson, Gemma C Johansson, Jörgen Hauryliuk, Vasili Wilson, Daniel N Nucleic Acids Res RNA and RNA-protein complexes HflX is a ubiquitous bacterial GTPase that splits and recycles stressed ribosomes. In addition to HflX, Listeria monocytogenes contains a second HflX homolog, HflXr. Unlike HflX, HflXr confers resistance to macrolide and lincosamide antibiotics by an experimentally unexplored mechanism. Here, we have determined cryo-EM structures of L. monocytogenes HflXr-50S and HflX-50S complexes as well as L. monocytogenes 70S ribosomes in the presence and absence of the lincosamide lincomycin. While the overall geometry of HflXr on the 50S subunit is similar to that of HflX, a loop within the N-terminal domain of HflXr, which is two amino acids longer than in HflX, reaches deeper into the peptidyltransferase center. Moreover, unlike HflX, the binding of HflXr induces conformational changes within adjacent rRNA nucleotides that would be incompatible with drug binding. These findings suggest that HflXr confers resistance using an allosteric ribosome protection mechanism, rather than by simply splitting and recycling antibiotic-stalled ribosomes. Oxford University Press 2022-10-27 /pmc/articles/PMC9638945/ /pubmed/36300626 http://dx.doi.org/10.1093/nar/gkac934 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle RNA and RNA-protein complexes
Koller, Timm O
Turnbull, Kathryn J
Vaitkevicius, Karolis
Crowe-McAuliffe, Caillan
Roghanian, Mohammad
Bulvas, Ondřej
Nakamoto, Jose A
Kurata, Tatsuaki
Julius, Christina
Atkinson, Gemma C
Johansson, Jörgen
Hauryliuk, Vasili
Wilson, Daniel N
Structural basis for HflXr-mediated antibiotic resistance in Listeria monocytogenes
title Structural basis for HflXr-mediated antibiotic resistance in Listeria monocytogenes
title_full Structural basis for HflXr-mediated antibiotic resistance in Listeria monocytogenes
title_fullStr Structural basis for HflXr-mediated antibiotic resistance in Listeria monocytogenes
title_full_unstemmed Structural basis for HflXr-mediated antibiotic resistance in Listeria monocytogenes
title_short Structural basis for HflXr-mediated antibiotic resistance in Listeria monocytogenes
title_sort structural basis for hflxr-mediated antibiotic resistance in listeria monocytogenes
topic RNA and RNA-protein complexes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638945/
https://www.ncbi.nlm.nih.gov/pubmed/36300626
http://dx.doi.org/10.1093/nar/gkac934
work_keys_str_mv AT kollertimmo structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes
AT turnbullkathrynj structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes
AT vaitkeviciuskarolis structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes
AT crowemcauliffecaillan structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes
AT roghanianmohammad structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes
AT bulvasondrej structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes
AT nakamotojosea structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes
AT kuratatatsuaki structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes
AT juliuschristina structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes
AT atkinsongemmac structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes
AT johanssonjorgen structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes
AT hauryliukvasili structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes
AT wilsondanieln structuralbasisforhflxrmediatedantibioticresistanceinlisteriamonocytogenes