Cargando…
Two-dimensional speckle technique for slope error measurements of weakly focusing reflective X-ray optics
Speckle-based at-wavelength metrology techniques now play an important role in X-ray wavefront measurements. However, for reflective X-ray optics, the majority of existing speckle-based methods fail to provide reliable 2D information about the optical surface being characterized. Compared with the 1...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641570/ https://www.ncbi.nlm.nih.gov/pubmed/36345746 http://dx.doi.org/10.1107/S160057752200916X |
Sumario: | Speckle-based at-wavelength metrology techniques now play an important role in X-ray wavefront measurements. However, for reflective X-ray optics, the majority of existing speckle-based methods fail to provide reliable 2D information about the optical surface being characterized. Compared with the 1D information typically output from speckled-based methods, a 2D map is more informative for understanding the overall quality of the optic being tested. In this paper, we propose a method for in situ 2D absolute metrology of weakly focusing X-ray mirrors. Importantly, the angular misalignment of the mirror can be easily corrected with the proposed 2D processing procedure. We hope the speckle pattern data processing method presented here will help to extend this technique to wider applications in the synchrotron radiation and X-ray free-electron laser communities. |
---|