Cargando…

CAFs-derived SCUBE1 promotes malignancy and stemness through the Shh/Gli1 pathway in hepatocellular carcinoma

BACKGROUND: The tumour microenvironment and cirrhotic liver are excellent sources of cancer-associated fibroblasts (CAFs), which participate in carcinogenesis. Thus, it is important to clarify the crosstalk between CAFs and HCC cells and the related mechanism in regulating carcinogenesis. METHODS: H...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jungang, Li, Rizhao, Li, Jiacheng, Chen, Ziyan, Lin, Zixia, Zhang, Baofu, Deng, Liming, Chen, Gang, Wang, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644546/
https://www.ncbi.nlm.nih.gov/pubmed/36348351
http://dx.doi.org/10.1186/s12967-022-03689-w
Descripción
Sumario:BACKGROUND: The tumour microenvironment and cirrhotic liver are excellent sources of cancer-associated fibroblasts (CAFs), which participate in carcinogenesis. Thus, it is important to clarify the crosstalk between CAFs and HCC cells and the related mechanism in regulating carcinogenesis. METHODS: Human hepatocellular carcinoma (HCC) tissues and matched adjacent normal tissues were obtained from HCC patients. Immunohistochemistry, Western blotting (WB) and RT–qPCR were performed to detect the expression of SCUBE1. The roles of SCUBE1 in inducing stemness features in HCC cells were explored and investigated in vitro and in vivo. Student’s t tests or Mann–Whitney U tests were used to compare continuous variables, while chi-square tests or Fisher’s exact tests were used to compare categorical variables between two groups. RESULTS: SCUBE1 was confirmed to be highly expressed in CAFs in HCC and had a strong connection with stemness and a poor prognosis. In addition, CAFs were found to secrete SCUBE1 to enhance the malignancy of HCC cells and increase the proportion of CD133-positive cells. Silencing SCUBE1 expression had the opposite effect. The Shh pathway was activated by SCUBE1 stimulation. Inhibition of cyclopamine partially reversed the stimulating effect of SCUBE1 both in vivo and in vitro. Moreover, based on the RT–qPCR, ELISA and WB results, a high SCUBE1 expression level was found in HCC tissue and serum. CONCLUSION: This study revealed that CAFs-derived SCUBE1 can enhance the malignancy and stemness of HCC cells through the Shh pathway. This study aims to provide new perspectives for future HCC studies and provide new strategies for HCC treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-022-03689-w.