Cargando…

Nociceptor neurons affect cancer immunosurveillance

Solid tumours are innervated by nerve fibres that arise from the autonomic and sensory peripheral nervous systems(1–5). Whether the neo-innervation of tumours by pain-initiating sensory neurons affects cancer immunosurveillance remains unclear. Here we show that melanoma cells interact with nocicept...

Descripción completa

Detalles Bibliográficos
Autores principales: Balood, Mohammad, Ahmadi, Maryam, Eichwald, Tuany, Ahmadi, Ali, Majdoubi, Abdelilah, Roversi, Karine, Roversi, Katiane, Lucido, Christopher T., Restaino, Anthony C., Huang, Siyi, Ji, Lexiang, Huang, Kai-Chih, Semerena, Elise, Thomas, Sini C., Trevino, Alexandro E., Merrison, Hannah, Parrin, Alexandre, Doyle, Benjamin, Vermeer, Daniel W., Spanos, William C., Williamson, Caitlin S., Seehus, Corey R., Foster, Simmie L., Dai, Hongyue, Shu, Chengyi J., Rangachari, Manu, Thibodeau, Jacques, V. Del Rincon, Sonia, Drapkin, Ronny, Rafei, Moutih, Ghasemlou, Nader, Vermeer, Paola D., Woolf, Clifford J., Talbot, Sebastien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646485/
https://www.ncbi.nlm.nih.gov/pubmed/36323780
http://dx.doi.org/10.1038/s41586-022-05374-w
_version_ 1784827175345586176
author Balood, Mohammad
Ahmadi, Maryam
Eichwald, Tuany
Ahmadi, Ali
Majdoubi, Abdelilah
Roversi, Karine
Roversi, Katiane
Lucido, Christopher T.
Restaino, Anthony C.
Huang, Siyi
Ji, Lexiang
Huang, Kai-Chih
Semerena, Elise
Thomas, Sini C.
Trevino, Alexandro E.
Merrison, Hannah
Parrin, Alexandre
Doyle, Benjamin
Vermeer, Daniel W.
Spanos, William C.
Williamson, Caitlin S.
Seehus, Corey R.
Foster, Simmie L.
Dai, Hongyue
Shu, Chengyi J.
Rangachari, Manu
Thibodeau, Jacques
V. Del Rincon, Sonia
Drapkin, Ronny
Rafei, Moutih
Ghasemlou, Nader
Vermeer, Paola D.
Woolf, Clifford J.
Talbot, Sebastien
author_facet Balood, Mohammad
Ahmadi, Maryam
Eichwald, Tuany
Ahmadi, Ali
Majdoubi, Abdelilah
Roversi, Karine
Roversi, Katiane
Lucido, Christopher T.
Restaino, Anthony C.
Huang, Siyi
Ji, Lexiang
Huang, Kai-Chih
Semerena, Elise
Thomas, Sini C.
Trevino, Alexandro E.
Merrison, Hannah
Parrin, Alexandre
Doyle, Benjamin
Vermeer, Daniel W.
Spanos, William C.
Williamson, Caitlin S.
Seehus, Corey R.
Foster, Simmie L.
Dai, Hongyue
Shu, Chengyi J.
Rangachari, Manu
Thibodeau, Jacques
V. Del Rincon, Sonia
Drapkin, Ronny
Rafei, Moutih
Ghasemlou, Nader
Vermeer, Paola D.
Woolf, Clifford J.
Talbot, Sebastien
author_sort Balood, Mohammad
collection PubMed
description Solid tumours are innervated by nerve fibres that arise from the autonomic and sensory peripheral nervous systems(1–5). Whether the neo-innervation of tumours by pain-initiating sensory neurons affects cancer immunosurveillance remains unclear. Here we show that melanoma cells interact with nociceptor neurons, leading to increases in their neurite outgrowth, responsiveness to noxious ligands and neuropeptide release. Calcitonin gene-related peptide (CGRP)—one such nociceptor-produced neuropeptide—directly increases the exhaustion of cytotoxic CD8(+) T cells, which limits their capacity to eliminate melanoma. Genetic ablation of the TRPV1 lineage, local pharmacological silencing of nociceptors and antagonism of the CGRP receptor RAMP1 all reduced the exhaustion of tumour-infiltrating leukocytes and decreased the growth of tumours, nearly tripling the survival rate of mice that were inoculated with B16F10 melanoma cells. Conversely, CD8(+) T cell exhaustion was rescued in sensory-neuron-depleted mice that were treated with local recombinant CGRP. As compared with wild-type CD8(+) T cells, Ramp1(−/)(−) CD8(+) T cells were protected against exhaustion when co-transplanted into tumour-bearing Rag1-deficient mice. Single-cell RNA sequencing of biopsies from patients with melanoma revealed that intratumoral RAMP1-expressing CD8(+) T cells were more exhausted than their RAMP1-negative counterparts, whereas overexpression of RAMP1 correlated with a poorer clinical prognosis. Overall, our results suggest that reducing the release of CGRP from tumour-innervating nociceptors could be a strategy to improve anti-tumour immunity by eliminating the immunomodulatory effects of CGRP on cytotoxic CD8(+) T cells.
format Online
Article
Text
id pubmed-9646485
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-96464852022-11-15 Nociceptor neurons affect cancer immunosurveillance Balood, Mohammad Ahmadi, Maryam Eichwald, Tuany Ahmadi, Ali Majdoubi, Abdelilah Roversi, Karine Roversi, Katiane Lucido, Christopher T. Restaino, Anthony C. Huang, Siyi Ji, Lexiang Huang, Kai-Chih Semerena, Elise Thomas, Sini C. Trevino, Alexandro E. Merrison, Hannah Parrin, Alexandre Doyle, Benjamin Vermeer, Daniel W. Spanos, William C. Williamson, Caitlin S. Seehus, Corey R. Foster, Simmie L. Dai, Hongyue Shu, Chengyi J. Rangachari, Manu Thibodeau, Jacques V. Del Rincon, Sonia Drapkin, Ronny Rafei, Moutih Ghasemlou, Nader Vermeer, Paola D. Woolf, Clifford J. Talbot, Sebastien Nature Article Solid tumours are innervated by nerve fibres that arise from the autonomic and sensory peripheral nervous systems(1–5). Whether the neo-innervation of tumours by pain-initiating sensory neurons affects cancer immunosurveillance remains unclear. Here we show that melanoma cells interact with nociceptor neurons, leading to increases in their neurite outgrowth, responsiveness to noxious ligands and neuropeptide release. Calcitonin gene-related peptide (CGRP)—one such nociceptor-produced neuropeptide—directly increases the exhaustion of cytotoxic CD8(+) T cells, which limits their capacity to eliminate melanoma. Genetic ablation of the TRPV1 lineage, local pharmacological silencing of nociceptors and antagonism of the CGRP receptor RAMP1 all reduced the exhaustion of tumour-infiltrating leukocytes and decreased the growth of tumours, nearly tripling the survival rate of mice that were inoculated with B16F10 melanoma cells. Conversely, CD8(+) T cell exhaustion was rescued in sensory-neuron-depleted mice that were treated with local recombinant CGRP. As compared with wild-type CD8(+) T cells, Ramp1(−/)(−) CD8(+) T cells were protected against exhaustion when co-transplanted into tumour-bearing Rag1-deficient mice. Single-cell RNA sequencing of biopsies from patients with melanoma revealed that intratumoral RAMP1-expressing CD8(+) T cells were more exhausted than their RAMP1-negative counterparts, whereas overexpression of RAMP1 correlated with a poorer clinical prognosis. Overall, our results suggest that reducing the release of CGRP from tumour-innervating nociceptors could be a strategy to improve anti-tumour immunity by eliminating the immunomodulatory effects of CGRP on cytotoxic CD8(+) T cells. Nature Publishing Group UK 2022-11-02 2022 /pmc/articles/PMC9646485/ /pubmed/36323780 http://dx.doi.org/10.1038/s41586-022-05374-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Balood, Mohammad
Ahmadi, Maryam
Eichwald, Tuany
Ahmadi, Ali
Majdoubi, Abdelilah
Roversi, Karine
Roversi, Katiane
Lucido, Christopher T.
Restaino, Anthony C.
Huang, Siyi
Ji, Lexiang
Huang, Kai-Chih
Semerena, Elise
Thomas, Sini C.
Trevino, Alexandro E.
Merrison, Hannah
Parrin, Alexandre
Doyle, Benjamin
Vermeer, Daniel W.
Spanos, William C.
Williamson, Caitlin S.
Seehus, Corey R.
Foster, Simmie L.
Dai, Hongyue
Shu, Chengyi J.
Rangachari, Manu
Thibodeau, Jacques
V. Del Rincon, Sonia
Drapkin, Ronny
Rafei, Moutih
Ghasemlou, Nader
Vermeer, Paola D.
Woolf, Clifford J.
Talbot, Sebastien
Nociceptor neurons affect cancer immunosurveillance
title Nociceptor neurons affect cancer immunosurveillance
title_full Nociceptor neurons affect cancer immunosurveillance
title_fullStr Nociceptor neurons affect cancer immunosurveillance
title_full_unstemmed Nociceptor neurons affect cancer immunosurveillance
title_short Nociceptor neurons affect cancer immunosurveillance
title_sort nociceptor neurons affect cancer immunosurveillance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646485/
https://www.ncbi.nlm.nih.gov/pubmed/36323780
http://dx.doi.org/10.1038/s41586-022-05374-w
work_keys_str_mv AT baloodmohammad nociceptorneuronsaffectcancerimmunosurveillance
AT ahmadimaryam nociceptorneuronsaffectcancerimmunosurveillance
AT eichwaldtuany nociceptorneuronsaffectcancerimmunosurveillance
AT ahmadiali nociceptorneuronsaffectcancerimmunosurveillance
AT majdoubiabdelilah nociceptorneuronsaffectcancerimmunosurveillance
AT roversikarine nociceptorneuronsaffectcancerimmunosurveillance
AT roversikatiane nociceptorneuronsaffectcancerimmunosurveillance
AT lucidochristophert nociceptorneuronsaffectcancerimmunosurveillance
AT restainoanthonyc nociceptorneuronsaffectcancerimmunosurveillance
AT huangsiyi nociceptorneuronsaffectcancerimmunosurveillance
AT jilexiang nociceptorneuronsaffectcancerimmunosurveillance
AT huangkaichih nociceptorneuronsaffectcancerimmunosurveillance
AT semerenaelise nociceptorneuronsaffectcancerimmunosurveillance
AT thomassinic nociceptorneuronsaffectcancerimmunosurveillance
AT trevinoalexandroe nociceptorneuronsaffectcancerimmunosurveillance
AT merrisonhannah nociceptorneuronsaffectcancerimmunosurveillance
AT parrinalexandre nociceptorneuronsaffectcancerimmunosurveillance
AT doylebenjamin nociceptorneuronsaffectcancerimmunosurveillance
AT vermeerdanielw nociceptorneuronsaffectcancerimmunosurveillance
AT spanoswilliamc nociceptorneuronsaffectcancerimmunosurveillance
AT williamsoncaitlins nociceptorneuronsaffectcancerimmunosurveillance
AT seehuscoreyr nociceptorneuronsaffectcancerimmunosurveillance
AT fostersimmiel nociceptorneuronsaffectcancerimmunosurveillance
AT daihongyue nociceptorneuronsaffectcancerimmunosurveillance
AT shuchengyij nociceptorneuronsaffectcancerimmunosurveillance
AT rangacharimanu nociceptorneuronsaffectcancerimmunosurveillance
AT thibodeaujacques nociceptorneuronsaffectcancerimmunosurveillance
AT vdelrinconsonia nociceptorneuronsaffectcancerimmunosurveillance
AT drapkinronny nociceptorneuronsaffectcancerimmunosurveillance
AT rafeimoutih nociceptorneuronsaffectcancerimmunosurveillance
AT ghasemlounader nociceptorneuronsaffectcancerimmunosurveillance
AT vermeerpaolad nociceptorneuronsaffectcancerimmunosurveillance
AT woolfcliffordj nociceptorneuronsaffectcancerimmunosurveillance
AT talbotsebastien nociceptorneuronsaffectcancerimmunosurveillance