Cargando…
Transcriptomic profiling analysis to identify genes associated with PA biosynthesis and insolubilization in the late stage of fruit development in C-PCNA persimmon
PA-enhanced content causes astringency in persimmon fruit. PCNA persimmons can lose their astringency naturally and they become edible when still on the tree, which allows for conserves of physical and financial resources. C-PCNA persimmon originates in China. Its deastringency trait primarily depen...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646812/ https://www.ncbi.nlm.nih.gov/pubmed/36352175 http://dx.doi.org/10.1038/s41598-022-23742-4 |
Sumario: | PA-enhanced content causes astringency in persimmon fruit. PCNA persimmons can lose their astringency naturally and they become edible when still on the tree, which allows for conserves of physical and financial resources. C-PCNA persimmon originates in China. Its deastringency trait primarily depends on decreased PA biosynthesis and PA insolubilization at the late stage of fruit development. Although some genes and transcription factors that may be involved in the deastringency of C-PCNA persimmon have been reported, the expression patterns of these genes during the key deastringency stage are reported less. To investigate the variation in PA contents and the expression patterns of deastringency-related genes during typical C-PCNA persimmon ‘Xiaoguo-tianshi’ fruit development and ripening, PA content and transcriptional profiling were carried out at five late stages from 70 to 160 DAF. The combinational analysis phenotype, PA content, and DEG enrichment revealed that 120–140 DAF and 140–160 DAF were the critical phases for PA biosynthesis reduction and PA insolubilization, respectively. The expression of PA biosynthesis-associated genes indicated that the downregulation of the ANR gene at 140–160 DAF may be associated with PA biosynthesis and is decreased by inhibiting its precursor cis-flavan-3-ols. We also found that a decrease in acetaldehyde metabolism-associated ALDH genes and an increase in ADH and PDC genes might result in C-PCNA persimmon PA insolubilization. In addition, a few MYB-bHLH-WD40 (MBW) homologous transcription factors in persimmon might play important roles in persimmon PA accumulation. Furthermore, combined coexpression network analysis and phylogenetic analysis of MBW suggested that three putative transcription factors WD40 (evm.TU.contig1.155), MYB (evm.TU.contig8910.486) and bHLH (evm.TU.contig1398.203), might connect and co-regulate both PA biosynthesis and its insolubilization in C-PCNA persimmon. The present study elucidated transcriptional insights into PA biosynthesis and insolubilization during the late development stages based on the C-PCNA D. kaki genome (unpublished). Thus, we focused on PA content variation and the expression patterns of genes involved in PA biosynthesis and insolubilization. Our work has provided additional evidence on previous knowledge and a basis for further exploration of the natural deastringency of C-PCNA persimmon. |
---|