Cargando…
Between Protein Fold and Nucleophile Identity: Multiscale Modeling of the TEV Protease Enzyme–Substrate Complex
[Image: see text] The cysteine protease from the tobacco etch virus (TEVp) is a well-known and widely utilized enzyme. TEVp’s chymotrypsin-like fold is generally associated with serine catalytic triads that differ in terms of a reaction mechanism from the most well-studied papain-like cysteine prote...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647873/ https://www.ncbi.nlm.nih.gov/pubmed/36385818 http://dx.doi.org/10.1021/acsomega.2c05201 |
_version_ | 1784827462417383424 |
---|---|
author | Zlobin, Alexander Golovin, Andrey |
author_facet | Zlobin, Alexander Golovin, Andrey |
author_sort | Zlobin, Alexander |
collection | PubMed |
description | [Image: see text] The cysteine protease from the tobacco etch virus (TEVp) is a well-known and widely utilized enzyme. TEVp’s chymotrypsin-like fold is generally associated with serine catalytic triads that differ in terms of a reaction mechanism from the most well-studied papain-like cysteine proteases. The question of what dominates the TEVp mechanism, nucleophile identity, or structural composition has never been previously addressed. Here, we use enhanced sampling multiscale modeling to uncover that TEVp combines the features of two worlds in such a way that potentially hampers its activity. We show that TEVp cysteine is strictly in the anionic form in a free enzyme similar to papain. Peptide binding shifts the equilibrium toward the nucleophile′s protonated form, characteristic of chymotrypsin-like proteases, although the cysteinyl anion form is still present and interconversion is rapid. This way cysteine protonation generates enzyme states that are a diversion from the most effective course of action, with only 13.2% of Michaelis complex sub-states able to initiate the reaction. As a result, we propose an updated view on the reaction mechanism catalyzed by TEVp. We also demonstrate that AlphaFold is able to construct protease–substrate complexes with high accuracy. We propose that our findings open a way for its industrious use in enzymological tasks. Unique features of TEVp discovered in this work open a discussion on the evolutionary history and trade-offs of optimizing serine triad-associated folds to cysteine as a nucleophile. |
format | Online Article Text |
id | pubmed-9647873 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-96478732022-11-15 Between Protein Fold and Nucleophile Identity: Multiscale Modeling of the TEV Protease Enzyme–Substrate Complex Zlobin, Alexander Golovin, Andrey ACS Omega [Image: see text] The cysteine protease from the tobacco etch virus (TEVp) is a well-known and widely utilized enzyme. TEVp’s chymotrypsin-like fold is generally associated with serine catalytic triads that differ in terms of a reaction mechanism from the most well-studied papain-like cysteine proteases. The question of what dominates the TEVp mechanism, nucleophile identity, or structural composition has never been previously addressed. Here, we use enhanced sampling multiscale modeling to uncover that TEVp combines the features of two worlds in such a way that potentially hampers its activity. We show that TEVp cysteine is strictly in the anionic form in a free enzyme similar to papain. Peptide binding shifts the equilibrium toward the nucleophile′s protonated form, characteristic of chymotrypsin-like proteases, although the cysteinyl anion form is still present and interconversion is rapid. This way cysteine protonation generates enzyme states that are a diversion from the most effective course of action, with only 13.2% of Michaelis complex sub-states able to initiate the reaction. As a result, we propose an updated view on the reaction mechanism catalyzed by TEVp. We also demonstrate that AlphaFold is able to construct protease–substrate complexes with high accuracy. We propose that our findings open a way for its industrious use in enzymological tasks. Unique features of TEVp discovered in this work open a discussion on the evolutionary history and trade-offs of optimizing serine triad-associated folds to cysteine as a nucleophile. American Chemical Society 2022-10-27 /pmc/articles/PMC9647873/ /pubmed/36385818 http://dx.doi.org/10.1021/acsomega.2c05201 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Zlobin, Alexander Golovin, Andrey Between Protein Fold and Nucleophile Identity: Multiscale Modeling of the TEV Protease Enzyme–Substrate Complex |
title | Between Protein
Fold and Nucleophile Identity: Multiscale
Modeling of the TEV Protease Enzyme–Substrate Complex |
title_full | Between Protein
Fold and Nucleophile Identity: Multiscale
Modeling of the TEV Protease Enzyme–Substrate Complex |
title_fullStr | Between Protein
Fold and Nucleophile Identity: Multiscale
Modeling of the TEV Protease Enzyme–Substrate Complex |
title_full_unstemmed | Between Protein
Fold and Nucleophile Identity: Multiscale
Modeling of the TEV Protease Enzyme–Substrate Complex |
title_short | Between Protein
Fold and Nucleophile Identity: Multiscale
Modeling of the TEV Protease Enzyme–Substrate Complex |
title_sort | between protein
fold and nucleophile identity: multiscale
modeling of the tev protease enzyme–substrate complex |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647873/ https://www.ncbi.nlm.nih.gov/pubmed/36385818 http://dx.doi.org/10.1021/acsomega.2c05201 |
work_keys_str_mv | AT zlobinalexander betweenproteinfoldandnucleophileidentitymultiscalemodelingofthetevproteaseenzymesubstratecomplex AT golovinandrey betweenproteinfoldandnucleophileidentitymultiscalemodelingofthetevproteaseenzymesubstratecomplex |