Cargando…

Automated preclinical detection of mechanical pain hypersensitivity and analgesia

The lack of sensitive and robust behavioral assessments of pain in preclinical models has been a major limitation for both pain research and the development of novel analgesics. Here, we demonstrate a novel data acquisition and analysis platform that provides automated, quantitative, and objective m...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zihe, Roberson, David P., Kotoda, Masakazu, Boivin, Bruno, Bohnslav, James P., González-Cano, Rafael, Yarmolinsky, David A., Turnes, Bruna Lenfers, Wimalasena, Nivanthika K., Neufeld, Shay Q., Barrett, Lee B., Quintão, Nara L. M., Fattori, Victor, Taub, Daniel G., Wiltschko, Alexander B., Andrews, Nick A., Harvey, Christopher D., Datta, Sandeep Robert, Woolf, Clifford J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649838/
https://www.ncbi.nlm.nih.gov/pubmed/35543646
http://dx.doi.org/10.1097/j.pain.0000000000002680
_version_ 1784827883340955648
author Zhang, Zihe
Roberson, David P.
Kotoda, Masakazu
Boivin, Bruno
Bohnslav, James P.
González-Cano, Rafael
Yarmolinsky, David A.
Turnes, Bruna Lenfers
Wimalasena, Nivanthika K.
Neufeld, Shay Q.
Barrett, Lee B.
Quintão, Nara L. M.
Fattori, Victor
Taub, Daniel G.
Wiltschko, Alexander B.
Andrews, Nick A.
Harvey, Christopher D.
Datta, Sandeep Robert
Woolf, Clifford J.
author_facet Zhang, Zihe
Roberson, David P.
Kotoda, Masakazu
Boivin, Bruno
Bohnslav, James P.
González-Cano, Rafael
Yarmolinsky, David A.
Turnes, Bruna Lenfers
Wimalasena, Nivanthika K.
Neufeld, Shay Q.
Barrett, Lee B.
Quintão, Nara L. M.
Fattori, Victor
Taub, Daniel G.
Wiltschko, Alexander B.
Andrews, Nick A.
Harvey, Christopher D.
Datta, Sandeep Robert
Woolf, Clifford J.
author_sort Zhang, Zihe
collection PubMed
description The lack of sensitive and robust behavioral assessments of pain in preclinical models has been a major limitation for both pain research and the development of novel analgesics. Here, we demonstrate a novel data acquisition and analysis platform that provides automated, quantitative, and objective measures of naturalistic rodent behavior in an observer-independent and unbiased fashion. The technology records freely behaving mice, in the dark, over extended periods for continuous acquisition of 2 parallel video data streams: (1) near-infrared frustrated total internal reflection for detecting the degree, force, and timing of surface contact and (2) simultaneous ongoing video graphing of whole-body pose. Using machine vision and machine learning, we automatically extract and quantify behavioral features from these data to reveal moment-by-moment changes that capture the internal pain state of rodents in multiple pain models. We show that these voluntary pain-related behaviors are reversible by analgesics and that analgesia can be automatically and objectively differentiated from sedation. Finally, we used this approach to generate a paw luminance ratio measure that is sensitive in capturing dynamic mechanical hypersensitivity over a period and scalable for high-throughput preclinical analgesic efficacy assessment.
format Online
Article
Text
id pubmed-9649838
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Wolters Kluwer
record_format MEDLINE/PubMed
spelling pubmed-96498382022-11-21 Automated preclinical detection of mechanical pain hypersensitivity and analgesia Zhang, Zihe Roberson, David P. Kotoda, Masakazu Boivin, Bruno Bohnslav, James P. González-Cano, Rafael Yarmolinsky, David A. Turnes, Bruna Lenfers Wimalasena, Nivanthika K. Neufeld, Shay Q. Barrett, Lee B. Quintão, Nara L. M. Fattori, Victor Taub, Daniel G. Wiltschko, Alexander B. Andrews, Nick A. Harvey, Christopher D. Datta, Sandeep Robert Woolf, Clifford J. Pain Research Paper The lack of sensitive and robust behavioral assessments of pain in preclinical models has been a major limitation for both pain research and the development of novel analgesics. Here, we demonstrate a novel data acquisition and analysis platform that provides automated, quantitative, and objective measures of naturalistic rodent behavior in an observer-independent and unbiased fashion. The technology records freely behaving mice, in the dark, over extended periods for continuous acquisition of 2 parallel video data streams: (1) near-infrared frustrated total internal reflection for detecting the degree, force, and timing of surface contact and (2) simultaneous ongoing video graphing of whole-body pose. Using machine vision and machine learning, we automatically extract and quantify behavioral features from these data to reveal moment-by-moment changes that capture the internal pain state of rodents in multiple pain models. We show that these voluntary pain-related behaviors are reversible by analgesics and that analgesia can be automatically and objectively differentiated from sedation. Finally, we used this approach to generate a paw luminance ratio measure that is sensitive in capturing dynamic mechanical hypersensitivity over a period and scalable for high-throughput preclinical analgesic efficacy assessment. Wolters Kluwer 2022-12 2022-05-11 /pmc/articles/PMC9649838/ /pubmed/35543646 http://dx.doi.org/10.1097/j.pain.0000000000002680 Text en Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Association for the Study of Pain. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
spellingShingle Research Paper
Zhang, Zihe
Roberson, David P.
Kotoda, Masakazu
Boivin, Bruno
Bohnslav, James P.
González-Cano, Rafael
Yarmolinsky, David A.
Turnes, Bruna Lenfers
Wimalasena, Nivanthika K.
Neufeld, Shay Q.
Barrett, Lee B.
Quintão, Nara L. M.
Fattori, Victor
Taub, Daniel G.
Wiltschko, Alexander B.
Andrews, Nick A.
Harvey, Christopher D.
Datta, Sandeep Robert
Woolf, Clifford J.
Automated preclinical detection of mechanical pain hypersensitivity and analgesia
title Automated preclinical detection of mechanical pain hypersensitivity and analgesia
title_full Automated preclinical detection of mechanical pain hypersensitivity and analgesia
title_fullStr Automated preclinical detection of mechanical pain hypersensitivity and analgesia
title_full_unstemmed Automated preclinical detection of mechanical pain hypersensitivity and analgesia
title_short Automated preclinical detection of mechanical pain hypersensitivity and analgesia
title_sort automated preclinical detection of mechanical pain hypersensitivity and analgesia
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649838/
https://www.ncbi.nlm.nih.gov/pubmed/35543646
http://dx.doi.org/10.1097/j.pain.0000000000002680
work_keys_str_mv AT zhangzihe automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT robersondavidp automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT kotodamasakazu automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT boivinbruno automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT bohnslavjamesp automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT gonzalezcanorafael automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT yarmolinskydavida automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT turnesbrunalenfers automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT wimalasenanivanthikak automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT neufeldshayq automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT barrettleeb automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT quintaonaralm automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT fattorivictor automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT taubdanielg automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT wiltschkoalexanderb automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT andrewsnicka automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT harveychristopherd automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT dattasandeeprobert automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia
AT woolfcliffordj automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia