Cargando…
Automated preclinical detection of mechanical pain hypersensitivity and analgesia
The lack of sensitive and robust behavioral assessments of pain in preclinical models has been a major limitation for both pain research and the development of novel analgesics. Here, we demonstrate a novel data acquisition and analysis platform that provides automated, quantitative, and objective m...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649838/ https://www.ncbi.nlm.nih.gov/pubmed/35543646 http://dx.doi.org/10.1097/j.pain.0000000000002680 |
_version_ | 1784827883340955648 |
---|---|
author | Zhang, Zihe Roberson, David P. Kotoda, Masakazu Boivin, Bruno Bohnslav, James P. González-Cano, Rafael Yarmolinsky, David A. Turnes, Bruna Lenfers Wimalasena, Nivanthika K. Neufeld, Shay Q. Barrett, Lee B. Quintão, Nara L. M. Fattori, Victor Taub, Daniel G. Wiltschko, Alexander B. Andrews, Nick A. Harvey, Christopher D. Datta, Sandeep Robert Woolf, Clifford J. |
author_facet | Zhang, Zihe Roberson, David P. Kotoda, Masakazu Boivin, Bruno Bohnslav, James P. González-Cano, Rafael Yarmolinsky, David A. Turnes, Bruna Lenfers Wimalasena, Nivanthika K. Neufeld, Shay Q. Barrett, Lee B. Quintão, Nara L. M. Fattori, Victor Taub, Daniel G. Wiltschko, Alexander B. Andrews, Nick A. Harvey, Christopher D. Datta, Sandeep Robert Woolf, Clifford J. |
author_sort | Zhang, Zihe |
collection | PubMed |
description | The lack of sensitive and robust behavioral assessments of pain in preclinical models has been a major limitation for both pain research and the development of novel analgesics. Here, we demonstrate a novel data acquisition and analysis platform that provides automated, quantitative, and objective measures of naturalistic rodent behavior in an observer-independent and unbiased fashion. The technology records freely behaving mice, in the dark, over extended periods for continuous acquisition of 2 parallel video data streams: (1) near-infrared frustrated total internal reflection for detecting the degree, force, and timing of surface contact and (2) simultaneous ongoing video graphing of whole-body pose. Using machine vision and machine learning, we automatically extract and quantify behavioral features from these data to reveal moment-by-moment changes that capture the internal pain state of rodents in multiple pain models. We show that these voluntary pain-related behaviors are reversible by analgesics and that analgesia can be automatically and objectively differentiated from sedation. Finally, we used this approach to generate a paw luminance ratio measure that is sensitive in capturing dynamic mechanical hypersensitivity over a period and scalable for high-throughput preclinical analgesic efficacy assessment. |
format | Online Article Text |
id | pubmed-9649838 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Wolters Kluwer |
record_format | MEDLINE/PubMed |
spelling | pubmed-96498382022-11-21 Automated preclinical detection of mechanical pain hypersensitivity and analgesia Zhang, Zihe Roberson, David P. Kotoda, Masakazu Boivin, Bruno Bohnslav, James P. González-Cano, Rafael Yarmolinsky, David A. Turnes, Bruna Lenfers Wimalasena, Nivanthika K. Neufeld, Shay Q. Barrett, Lee B. Quintão, Nara L. M. Fattori, Victor Taub, Daniel G. Wiltschko, Alexander B. Andrews, Nick A. Harvey, Christopher D. Datta, Sandeep Robert Woolf, Clifford J. Pain Research Paper The lack of sensitive and robust behavioral assessments of pain in preclinical models has been a major limitation for both pain research and the development of novel analgesics. Here, we demonstrate a novel data acquisition and analysis platform that provides automated, quantitative, and objective measures of naturalistic rodent behavior in an observer-independent and unbiased fashion. The technology records freely behaving mice, in the dark, over extended periods for continuous acquisition of 2 parallel video data streams: (1) near-infrared frustrated total internal reflection for detecting the degree, force, and timing of surface contact and (2) simultaneous ongoing video graphing of whole-body pose. Using machine vision and machine learning, we automatically extract and quantify behavioral features from these data to reveal moment-by-moment changes that capture the internal pain state of rodents in multiple pain models. We show that these voluntary pain-related behaviors are reversible by analgesics and that analgesia can be automatically and objectively differentiated from sedation. Finally, we used this approach to generate a paw luminance ratio measure that is sensitive in capturing dynamic mechanical hypersensitivity over a period and scalable for high-throughput preclinical analgesic efficacy assessment. Wolters Kluwer 2022-12 2022-05-11 /pmc/articles/PMC9649838/ /pubmed/35543646 http://dx.doi.org/10.1097/j.pain.0000000000002680 Text en Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Association for the Study of Pain. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | Research Paper Zhang, Zihe Roberson, David P. Kotoda, Masakazu Boivin, Bruno Bohnslav, James P. González-Cano, Rafael Yarmolinsky, David A. Turnes, Bruna Lenfers Wimalasena, Nivanthika K. Neufeld, Shay Q. Barrett, Lee B. Quintão, Nara L. M. Fattori, Victor Taub, Daniel G. Wiltschko, Alexander B. Andrews, Nick A. Harvey, Christopher D. Datta, Sandeep Robert Woolf, Clifford J. Automated preclinical detection of mechanical pain hypersensitivity and analgesia |
title | Automated preclinical detection of mechanical pain hypersensitivity and analgesia |
title_full | Automated preclinical detection of mechanical pain hypersensitivity and analgesia |
title_fullStr | Automated preclinical detection of mechanical pain hypersensitivity and analgesia |
title_full_unstemmed | Automated preclinical detection of mechanical pain hypersensitivity and analgesia |
title_short | Automated preclinical detection of mechanical pain hypersensitivity and analgesia |
title_sort | automated preclinical detection of mechanical pain hypersensitivity and analgesia |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649838/ https://www.ncbi.nlm.nih.gov/pubmed/35543646 http://dx.doi.org/10.1097/j.pain.0000000000002680 |
work_keys_str_mv | AT zhangzihe automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT robersondavidp automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT kotodamasakazu automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT boivinbruno automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT bohnslavjamesp automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT gonzalezcanorafael automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT yarmolinskydavida automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT turnesbrunalenfers automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT wimalasenanivanthikak automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT neufeldshayq automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT barrettleeb automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT quintaonaralm automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT fattorivictor automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT taubdanielg automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT wiltschkoalexanderb automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT andrewsnicka automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT harveychristopherd automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT dattasandeeprobert automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia AT woolfcliffordj automatedpreclinicaldetectionofmechanicalpainhypersensitivityandanalgesia |