Cargando…

Wnt-pathway inhibitors with selective activity against triple-negative breast cancer: From thienopyrimidine to quinazoline inhibitors

The Wnt-pathway has a critical role in development and tissue homeostasis and has attracted increased attention to develop anticancer drugs due to its aberrant activation in many cancers. In this study, we identified a novel small molecule series with a thienopyrimidine scaffold acting as a downstre...

Descripción completa

Detalles Bibliográficos
Autores principales: Boudou, Cédric, Mattio, Luce, Koval, Alexey, Soulard, Valentin, Katanaev, Vladimir L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649909/
https://www.ncbi.nlm.nih.gov/pubmed/36386148
http://dx.doi.org/10.3389/fphar.2022.1045102
Descripción
Sumario:The Wnt-pathway has a critical role in development and tissue homeostasis and has attracted increased attention to develop anticancer drugs due to its aberrant activation in many cancers. In this study, we identified a novel small molecule series with a thienopyrimidine scaffold acting as a downstream inhibitor of the β-catenin-dependent Wnt-pathway. This novel chemotype was investigated using Wnt-dependent triple-negative breast cancer (TNBC) cell lines. Structure activity relationship (SAR) exploration led to identification of low micromolar compounds such as 5a, 5d, 5e and a novel series with quinazoline scaffold such as 9d. Further investigation showed translation of activity to inhibit cancer survival of HCC1395 and MDA-MB-468 TNBC cell lines without affecting a non-cancerous breast epithelial cell line MCF10a. This anti-proliferative effect was synergistic to docetaxel treatment. Collectively, we identified novel chemotypes acting as a downstream inhibitor of β-catenin-dependent Wnt-pathway that could expand therapeutic options to manage TNBC.