Cargando…
Antioxidant and antidiabetic activities of a polyphenol rich extract obtained from Abelmoschus esculentus (okra) seeds using optimized conditions in microwave-assisted extraction (MAE)
Functional foods have gained popularity in recent decades. They are exploited for their bioactive compounds like polyphenols, which are highly demanded in cosmetic, pharmaceutical and nutraceutical industries. However, extractive techniques and conditions used up to recently are almost obsolete and...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650115/ https://www.ncbi.nlm.nih.gov/pubmed/36386938 http://dx.doi.org/10.3389/fnut.2022.1030385 |
_version_ | 1784827941699452928 |
---|---|
author | Woumbo, Cerile Ypolyte Kuate, Dieudonné Metue Tamo, Danielle Gaelle Womeni, Hilaire Macaire |
author_facet | Woumbo, Cerile Ypolyte Kuate, Dieudonné Metue Tamo, Danielle Gaelle Womeni, Hilaire Macaire |
author_sort | Woumbo, Cerile Ypolyte |
collection | PubMed |
description | Functional foods have gained popularity in recent decades. They are exploited for their bioactive compounds like polyphenols, which are highly demanded in cosmetic, pharmaceutical and nutraceutical industries. However, extractive techniques and conditions used up to recently are almost obsolete and must be optimized for higher efficiency. The current study aimed to evaluate the antidiabetic potential of an optimized extract of Abelmoschus esculentus (okra) seeds. The optimal conditions for extracting polyphenolic compounds from okra seeds were determined using Microwave Assisted Extraction (MAE). A Face Center Composite Design (FCCD) was used for optimization. Solvent/dry matter ratio, wavelength and time were considered while the response studied was the polyphenolic content. The extract obtained at optimal conditions was characterized using Thin Layer Chromatography (TLC) and Fourier Transform Infra-Red (FTIR) spectroscopy, then tested for its antioxidant, alpha amylase inhibitory and antidiabetic activities. Response Surface Methodology (RSM) permitted the determination of the optimal conditions for phenols extraction as: microwave power 330 W, with a solvent ratio of 97.04/1 mL/g for 9.5 min of extraction time. The optimized extract showed a phenolic content up to 86.37 ± 1.13 mg GAE/g containing quercetin and catechin as revealed by the TLC. Functional groups characteristic of polyphenols were identified on FTIR spectra, and the extract exhibited good in vitro antioxidant capacities with DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical scavenging capacity and FRAP (Ferric Reducing Antioxidant Power Assay). An IC(50) of 3.99 ± 0.15 μg/mL was obtained with the DPPH scavenging test. Alpha amylase inhibitory assay revealed that the optimized okra extract behaved as a non-competitive inhibitor of porcine pancreatic amylase with an IC(50) of 484.17 ± 2.33 μg/mL. Antidiabetic activity of the extract was observed in streptozotocin-induced diabetic males Wistar rats, as shown by the fasting blood glucose levels, food intake, changes in body weight and serum lipid profile among others. |
format | Online Article Text |
id | pubmed-9650115 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96501152022-11-15 Antioxidant and antidiabetic activities of a polyphenol rich extract obtained from Abelmoschus esculentus (okra) seeds using optimized conditions in microwave-assisted extraction (MAE) Woumbo, Cerile Ypolyte Kuate, Dieudonné Metue Tamo, Danielle Gaelle Womeni, Hilaire Macaire Front Nutr Nutrition Functional foods have gained popularity in recent decades. They are exploited for their bioactive compounds like polyphenols, which are highly demanded in cosmetic, pharmaceutical and nutraceutical industries. However, extractive techniques and conditions used up to recently are almost obsolete and must be optimized for higher efficiency. The current study aimed to evaluate the antidiabetic potential of an optimized extract of Abelmoschus esculentus (okra) seeds. The optimal conditions for extracting polyphenolic compounds from okra seeds were determined using Microwave Assisted Extraction (MAE). A Face Center Composite Design (FCCD) was used for optimization. Solvent/dry matter ratio, wavelength and time were considered while the response studied was the polyphenolic content. The extract obtained at optimal conditions was characterized using Thin Layer Chromatography (TLC) and Fourier Transform Infra-Red (FTIR) spectroscopy, then tested for its antioxidant, alpha amylase inhibitory and antidiabetic activities. Response Surface Methodology (RSM) permitted the determination of the optimal conditions for phenols extraction as: microwave power 330 W, with a solvent ratio of 97.04/1 mL/g for 9.5 min of extraction time. The optimized extract showed a phenolic content up to 86.37 ± 1.13 mg GAE/g containing quercetin and catechin as revealed by the TLC. Functional groups characteristic of polyphenols were identified on FTIR spectra, and the extract exhibited good in vitro antioxidant capacities with DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical scavenging capacity and FRAP (Ferric Reducing Antioxidant Power Assay). An IC(50) of 3.99 ± 0.15 μg/mL was obtained with the DPPH scavenging test. Alpha amylase inhibitory assay revealed that the optimized okra extract behaved as a non-competitive inhibitor of porcine pancreatic amylase with an IC(50) of 484.17 ± 2.33 μg/mL. Antidiabetic activity of the extract was observed in streptozotocin-induced diabetic males Wistar rats, as shown by the fasting blood glucose levels, food intake, changes in body weight and serum lipid profile among others. Frontiers Media S.A. 2022-10-28 /pmc/articles/PMC9650115/ /pubmed/36386938 http://dx.doi.org/10.3389/fnut.2022.1030385 Text en Copyright © 2022 Woumbo, Kuate, Metue Tamo and Womeni. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Nutrition Woumbo, Cerile Ypolyte Kuate, Dieudonné Metue Tamo, Danielle Gaelle Womeni, Hilaire Macaire Antioxidant and antidiabetic activities of a polyphenol rich extract obtained from Abelmoschus esculentus (okra) seeds using optimized conditions in microwave-assisted extraction (MAE) |
title | Antioxidant and antidiabetic activities of a polyphenol rich extract obtained from Abelmoschus esculentus (okra) seeds using optimized conditions in microwave-assisted extraction (MAE) |
title_full | Antioxidant and antidiabetic activities of a polyphenol rich extract obtained from Abelmoschus esculentus (okra) seeds using optimized conditions in microwave-assisted extraction (MAE) |
title_fullStr | Antioxidant and antidiabetic activities of a polyphenol rich extract obtained from Abelmoschus esculentus (okra) seeds using optimized conditions in microwave-assisted extraction (MAE) |
title_full_unstemmed | Antioxidant and antidiabetic activities of a polyphenol rich extract obtained from Abelmoschus esculentus (okra) seeds using optimized conditions in microwave-assisted extraction (MAE) |
title_short | Antioxidant and antidiabetic activities of a polyphenol rich extract obtained from Abelmoschus esculentus (okra) seeds using optimized conditions in microwave-assisted extraction (MAE) |
title_sort | antioxidant and antidiabetic activities of a polyphenol rich extract obtained from abelmoschus esculentus (okra) seeds using optimized conditions in microwave-assisted extraction (mae) |
topic | Nutrition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650115/ https://www.ncbi.nlm.nih.gov/pubmed/36386938 http://dx.doi.org/10.3389/fnut.2022.1030385 |
work_keys_str_mv | AT woumbocerileypolyte antioxidantandantidiabeticactivitiesofapolyphenolrichextractobtainedfromabelmoschusesculentusokraseedsusingoptimizedconditionsinmicrowaveassistedextractionmae AT kuatedieudonne antioxidantandantidiabeticactivitiesofapolyphenolrichextractobtainedfromabelmoschusesculentusokraseedsusingoptimizedconditionsinmicrowaveassistedextractionmae AT metuetamodaniellegaelle antioxidantandantidiabeticactivitiesofapolyphenolrichextractobtainedfromabelmoschusesculentusokraseedsusingoptimizedconditionsinmicrowaveassistedextractionmae AT womenihilairemacaire antioxidantandantidiabeticactivitiesofapolyphenolrichextractobtainedfromabelmoschusesculentusokraseedsusingoptimizedconditionsinmicrowaveassistedextractionmae |