Cargando…
Structural perturbations of substrate binding and oxidation state changes in a lytic polysaccharide monooxygenase
LPMOs are enzymes which catalyse the oxidation of a C-H bond within polysaccharides, leading to their oxidative cleavage. To achieve this, LPMOs employ highly reactive oxidising intermediates, the generation of which is likely coupled to substrate binding to the enzyme. The nature of this coupling i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653361/ https://www.ncbi.nlm.nih.gov/pubmed/36208326 http://dx.doi.org/10.1007/s00775-022-01966-z |
_version_ | 1784828664388517888 |
---|---|
author | Walton, Paul H. Davies, Gideon J. |
author_facet | Walton, Paul H. Davies, Gideon J. |
author_sort | Walton, Paul H. |
collection | PubMed |
description | LPMOs are enzymes which catalyse the oxidation of a C-H bond within polysaccharides, leading to their oxidative cleavage. To achieve this, LPMOs employ highly reactive oxidising intermediates, the generation of which is likely coupled to substrate binding to the enzyme. The nature of this coupling is unknown. Here we report a statistical comparison for four three-dimensional structures of an AA9 LPMO crystallised in the same space group but in different oxidation and substrate-binding states, to determine which significant structural perturbations occur at the enzyme upon either oxidation state change or the binding of substrate. In a novel step, we determine the global random error associated with the positional coordinates of atoms using the method of moments to ascertain the statistical estimators of Gaussian distributions of pairwise RMS differences between individual atoms in different structures. The results show that a change in the oxidation state of the copper leads to no significant structural changes, and that binding of the substrate leads to a single change in the conformation of a tryptophan residue. This tryptophan has previously been identified as part of a charge transfer pathway between the active site and the external surface of the protein, and the structural change identified herein may be part of the substrate-enzyme coupling mechanism. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00775-022-01966-z. |
format | Online Article Text |
id | pubmed-9653361 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-96533612022-11-15 Structural perturbations of substrate binding and oxidation state changes in a lytic polysaccharide monooxygenase Walton, Paul H. Davies, Gideon J. J Biol Inorg Chem Original Paper LPMOs are enzymes which catalyse the oxidation of a C-H bond within polysaccharides, leading to their oxidative cleavage. To achieve this, LPMOs employ highly reactive oxidising intermediates, the generation of which is likely coupled to substrate binding to the enzyme. The nature of this coupling is unknown. Here we report a statistical comparison for four three-dimensional structures of an AA9 LPMO crystallised in the same space group but in different oxidation and substrate-binding states, to determine which significant structural perturbations occur at the enzyme upon either oxidation state change or the binding of substrate. In a novel step, we determine the global random error associated with the positional coordinates of atoms using the method of moments to ascertain the statistical estimators of Gaussian distributions of pairwise RMS differences between individual atoms in different structures. The results show that a change in the oxidation state of the copper leads to no significant structural changes, and that binding of the substrate leads to a single change in the conformation of a tryptophan residue. This tryptophan has previously been identified as part of a charge transfer pathway between the active site and the external surface of the protein, and the structural change identified herein may be part of the substrate-enzyme coupling mechanism. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00775-022-01966-z. Springer International Publishing 2022-10-08 2022 /pmc/articles/PMC9653361/ /pubmed/36208326 http://dx.doi.org/10.1007/s00775-022-01966-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Paper Walton, Paul H. Davies, Gideon J. Structural perturbations of substrate binding and oxidation state changes in a lytic polysaccharide monooxygenase |
title | Structural perturbations of substrate binding and oxidation state changes in a lytic polysaccharide monooxygenase |
title_full | Structural perturbations of substrate binding and oxidation state changes in a lytic polysaccharide monooxygenase |
title_fullStr | Structural perturbations of substrate binding and oxidation state changes in a lytic polysaccharide monooxygenase |
title_full_unstemmed | Structural perturbations of substrate binding and oxidation state changes in a lytic polysaccharide monooxygenase |
title_short | Structural perturbations of substrate binding and oxidation state changes in a lytic polysaccharide monooxygenase |
title_sort | structural perturbations of substrate binding and oxidation state changes in a lytic polysaccharide monooxygenase |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653361/ https://www.ncbi.nlm.nih.gov/pubmed/36208326 http://dx.doi.org/10.1007/s00775-022-01966-z |
work_keys_str_mv | AT waltonpaulh structuralperturbationsofsubstratebindingandoxidationstatechangesinalyticpolysaccharidemonooxygenase AT daviesgideonj structuralperturbationsofsubstratebindingandoxidationstatechangesinalyticpolysaccharidemonooxygenase |