Cargando…

An Improved Online Self-Calibration Method Utilizing Angular Velocity Observation for Ultra High Accuracy PIGA-Based IMU

In the field of ultra high accuracy inertial measurement unit (IMU), pendulous integrating gyroscopic accelerometer (PIGA) has become a research hot spot due to its high-end performance. However, PIGA is sensitive to angular velocity, and the calibration process of PIGA-based IMU will be very compli...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yongfeng, Hu, Shuling, Yang, Gongliu, Zhou, Xiaojun, Liu, Hongwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653652/
https://www.ncbi.nlm.nih.gov/pubmed/36365833
http://dx.doi.org/10.3390/s22218136
Descripción
Sumario:In the field of ultra high accuracy inertial measurement unit (IMU), pendulous integrating gyroscopic accelerometer (PIGA) has become a research hot spot due to its high-end performance. However, PIGA is sensitive to angular velocity, and the calibration process of PIGA-based IMU will be very complicated, which makes online self-calibration difficult to implement. To solve the above problems, we proposed an online self-calibration method utilizing angular velocity observation. The main contributions of this study are twofold: (1) An error analysis of PIGA is conducted in this paper, and the error model has also been simplified to suit the self-calibration model. (2) An improved online self-calibration method utilizing angular observation based on a simplified PIGA error model is proposed in this study. Experimental results show that the self-calibration method proposed in this study can improve the PIGA online calibration accuracy effectively (with the accuracy within 0.02 m/s/pulse), which can improve the dynamic accuracy of the PIGA.