Cargando…
Learning to Ascend Stairs and Ramps: Deep Reinforcement Learning for a Physics-Based Human Musculoskeletal Model
This paper proposes to use deep reinforcement learning to teach a physics-based human musculoskeletal model to ascend stairs and ramps. The deep reinforcement learning architecture employs the proximal policy optimization algorithm combined with imitation learning and is trained with experimental da...
Autores principales: | Adriaenssens, Aurelien J. C., Raveendranathan, Vishal, Carloni, Raffaella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654493/ https://www.ncbi.nlm.nih.gov/pubmed/36366177 http://dx.doi.org/10.3390/s22218479 |
Ejemplares similares
-
Musculoskeletal model of osseointegrated transfemoral amputees in OpenSim
por: Raveendranathan, Vishal, et al.
Publicado: (2023) -
Effects of an active prosthetic ankle during ambulation on stairs and ramps
por: Alimusaj, M, et al.
Publicado: (2008) -
A Case of Ascending and Descending Stair-Specific Dystonia
por: Arceri, Talia, et al.
Publicado: (2019) -
Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning
por: Denizdurduran, Berat, et al.
Publicado: (2022) -
Correction: Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning
por: Denizdurduran, Berat, et al.
Publicado: (2022)