Cargando…
Deep Learning-Based NMPC for Local Motion Planning of Last-Mile Delivery Robot
Feasible local motion planning for autonomous mobile robots in dynamic environments requires predicting how the scene evolves. Conventional navigation stakes rely on a local map to represent how a dynamic scene changes over time. However, these navigation stakes depend highly on the accuracy of the...
Autores principales: | Imad, Muhammad, Doukhi, Oualid, Lee, Deok Jin, Kim, Ji chul, Kim, Yeong Jae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655314/ https://www.ncbi.nlm.nih.gov/pubmed/36365800 http://dx.doi.org/10.3390/s22218101 |
Ejemplares similares
-
Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments
por: Doukhi, Oualid, et al.
Publicado: (2021) -
The adoption of self-driving delivery robots in last mile logistics
por: Chen, Cheng, et al.
Publicado: (2021) -
Transfer Learning Based Semantic Segmentation for 3D Object Detection from Point Cloud
por: Imad, Muhammad, et al.
Publicado: (2021) -
Consumer acceptance of autonomous delivery robots for last-mile delivery: Technological and health perspectives
por: Yuen, Kum Fai, et al.
Publicado: (2022) -
The last mile of analytics
por: Barlow, Mike
Publicado: (2015)