Cargando…

Research on Underwater Complex Scene SLAM Algorithm Based on Image Enhancement

Underwater images typically suffer from less explicit feature point information and more redundant information due to wild conditions. To solve these degradation problems, we propose the VINS-MONO algorithm to enhance the quality of the underwater image. Specifically, we first used the FAST feature...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Renhan, Gao, Yuzhuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9656716/
https://www.ncbi.nlm.nih.gov/pubmed/36366215
http://dx.doi.org/10.3390/s22218517
Descripción
Sumario:Underwater images typically suffer from less explicit feature point information and more redundant information due to wild conditions. To solve these degradation problems, we propose the VINS-MONO algorithm to enhance the quality of the underwater image. Specifically, we first used the FAST feature point extraction algorithm to improve the extraction speed. Then, the inverse optical flow method was used to improve the accuracy of feature extraction. At the same time, several kinds of residual information were extracted and marginalized, separately, in the marginalization part of the back-end, in order to improve the marginalization speed. Extensive experiments on underwater dataset HAUD-Dataset and public dataset EuRoC show that our approach is superior to the original VINS-MONO algorithm. In addition, the original algorithm optimizes the situation in which the feature point information is not obvious, and the redundant information is more complex in the underwater environment, which effectively improves the visual quality of the underwater image.