Cargando…

xRatSLAM: An Extensible RatSLAM Computational Framework

Simultaneous localization and mapping (SLAM) refers to techniques for autonomously constructing a map of an unknown environment while, at the same time, locating the robot in this map. RatSLAM, a prevalent method, is based on the navigation system found in rodent brains. It has served as a base algo...

Descripción completa

Detalles Bibliográficos
Autores principales: de Souza Muñoz, Mauro Enrique, Chaves Menezes, Matheus, Pignaton de Freitas, Edison, Cheng, Sen, de Almeida Ribeiro, Paulo Rogério, de Almeida Neto, Areolino, Muniz de Oliveira, Alexandre César
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657370/
https://www.ncbi.nlm.nih.gov/pubmed/36366002
http://dx.doi.org/10.3390/s22218305
_version_ 1784829677067567104
author de Souza Muñoz, Mauro Enrique
Chaves Menezes, Matheus
Pignaton de Freitas, Edison
Cheng, Sen
de Almeida Ribeiro, Paulo Rogério
de Almeida Neto, Areolino
Muniz de Oliveira, Alexandre César
author_facet de Souza Muñoz, Mauro Enrique
Chaves Menezes, Matheus
Pignaton de Freitas, Edison
Cheng, Sen
de Almeida Ribeiro, Paulo Rogério
de Almeida Neto, Areolino
Muniz de Oliveira, Alexandre César
author_sort de Souza Muñoz, Mauro Enrique
collection PubMed
description Simultaneous localization and mapping (SLAM) refers to techniques for autonomously constructing a map of an unknown environment while, at the same time, locating the robot in this map. RatSLAM, a prevalent method, is based on the navigation system found in rodent brains. It has served as a base algorithm for other bioinspired approaches, and its implementation has been extended to incorporate new features. This work proposes xRatSLAM: an extensible, parallel, open-source framework applicable for developing and testing new RatSLAM variations. Tests were carried out to evaluate and validate the proposed framework, allowing the comparison of xRatSLAM with OpenRatSLAM and assessing the impact of replacing framework components. The results provide evidence that the maps produced by xRatSLAM are similar to those produced by OpenRatSLAM when they are fed with the same input parameters, which is a positive result, and that implemented modules can be easily changed without impacting other parts of the framework.
format Online
Article
Text
id pubmed-9657370
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96573702022-11-15 xRatSLAM: An Extensible RatSLAM Computational Framework de Souza Muñoz, Mauro Enrique Chaves Menezes, Matheus Pignaton de Freitas, Edison Cheng, Sen de Almeida Ribeiro, Paulo Rogério de Almeida Neto, Areolino Muniz de Oliveira, Alexandre César Sensors (Basel) Article Simultaneous localization and mapping (SLAM) refers to techniques for autonomously constructing a map of an unknown environment while, at the same time, locating the robot in this map. RatSLAM, a prevalent method, is based on the navigation system found in rodent brains. It has served as a base algorithm for other bioinspired approaches, and its implementation has been extended to incorporate new features. This work proposes xRatSLAM: an extensible, parallel, open-source framework applicable for developing and testing new RatSLAM variations. Tests were carried out to evaluate and validate the proposed framework, allowing the comparison of xRatSLAM with OpenRatSLAM and assessing the impact of replacing framework components. The results provide evidence that the maps produced by xRatSLAM are similar to those produced by OpenRatSLAM when they are fed with the same input parameters, which is a positive result, and that implemented modules can be easily changed without impacting other parts of the framework. MDPI 2022-10-29 /pmc/articles/PMC9657370/ /pubmed/36366002 http://dx.doi.org/10.3390/s22218305 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
de Souza Muñoz, Mauro Enrique
Chaves Menezes, Matheus
Pignaton de Freitas, Edison
Cheng, Sen
de Almeida Ribeiro, Paulo Rogério
de Almeida Neto, Areolino
Muniz de Oliveira, Alexandre César
xRatSLAM: An Extensible RatSLAM Computational Framework
title xRatSLAM: An Extensible RatSLAM Computational Framework
title_full xRatSLAM: An Extensible RatSLAM Computational Framework
title_fullStr xRatSLAM: An Extensible RatSLAM Computational Framework
title_full_unstemmed xRatSLAM: An Extensible RatSLAM Computational Framework
title_short xRatSLAM: An Extensible RatSLAM Computational Framework
title_sort xratslam: an extensible ratslam computational framework
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657370/
https://www.ncbi.nlm.nih.gov/pubmed/36366002
http://dx.doi.org/10.3390/s22218305
work_keys_str_mv AT desouzamunozmauroenrique xratslamanextensibleratslamcomputationalframework
AT chavesmenezesmatheus xratslamanextensibleratslamcomputationalframework
AT pignatondefreitasedison xratslamanextensibleratslamcomputationalframework
AT chengsen xratslamanextensibleratslamcomputationalframework
AT dealmeidaribeiropaulorogerio xratslamanextensibleratslamcomputationalframework
AT dealmeidanetoareolino xratslamanextensibleratslamcomputationalframework
AT munizdeoliveiraalexandrecesar xratslamanextensibleratslamcomputationalframework