Cargando…
CMANet: Cross-Modality Attention Network for Indoor-Scene Semantic Segmentation
Indoor-scene semantic segmentation is of great significance to indoor navigation, high-precision map creation, route planning, etc. However, incorporating RGB and HHA images for indoor-scene semantic segmentation is a promising yet challenging task, due to the diversity of textures and structures an...
Autores principales: | Zhu, Longze, Kang, Zhizhong, Zhou, Mei, Yang, Xi, Wang, Zhen, Cao, Zhen, Ye, Chenming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659145/ https://www.ncbi.nlm.nih.gov/pubmed/36366217 http://dx.doi.org/10.3390/s22218520 |
Ejemplares similares
-
Based on cross-scale fusion attention mechanism network for semantic segmentation for street scenes
por: Ye, Xin, et al.
Publicado: (2023) -
Exploration of Semantic Label Decomposition and Dataset Size in Semantic Indoor Scenes Synthesis via Optimized Residual Generative Adversarial Networks
por: Ibrahem, Hatem, et al.
Publicado: (2022) -
Overt attentional correlates of memorability of scene images and their relationships to scene semantics
por: Lyu, Muxuan, et al.
Publicado: (2020) -
Semantic segmentation of autonomous driving scenes based on multi-scale adaptive attention mechanism
por: Liu, Danping, et al.
Publicado: (2023) -
Self-Enhanced Mixed Attention Network for Three-Modal Images Few-Shot Semantic Segmentation
por: Song, Kechen, et al.
Publicado: (2023)