Cargando…
Selected machine learning of HOMO–LUMO gaps with improved data-efficiency
Despite their relevance for organic electronics, quantum machine learning (QML) models of molecular electronic properties, such as HOMO–LUMO-gaps, often struggle to achieve satisfying data-efficiency as measured by decreasing prediction errors for increasing training set sizes. We demonstrate that p...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662596/ https://www.ncbi.nlm.nih.gov/pubmed/36561279 http://dx.doi.org/10.1039/d2ma00742h |