Cargando…
Selected machine learning of HOMO–LUMO gaps with improved data-efficiency
Despite their relevance for organic electronics, quantum machine learning (QML) models of molecular electronic properties, such as HOMO–LUMO-gaps, often struggle to achieve satisfying data-efficiency as measured by decreasing prediction errors for increasing training set sizes. We demonstrate that p...
Autores principales: | Mazouin, Bernard, Schöpfer, Alexandre Alain, von Lilienfeld, O. Anatole |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662596/ https://www.ncbi.nlm.nih.gov/pubmed/36561279 http://dx.doi.org/10.1039/d2ma00742h |
Ejemplares similares
-
Clarifying the Adsorption of Triphenylamine on Au(111):
Filling the HOMO–LUMO Gap
por: Zhang, Teng, et al.
Publicado: (2022) -
Functional Group Effects on the HOMO–LUMO Gap of g-C(3)N(4)
por: Li, Hao, et al.
Publicado: (2018) -
Changes in the Electronic States of Low-Temperature
Solid n-Tetradecane: Decrease in the HOMO–LUMO
Gap
por: Morisawa, Yusuke, et al.
Publicado: (2017) -
Scalable training of graph convolutional neural networks for fast and accurate predictions of HOMO-LUMO gap in molecules
por: Choi, Jong Youl, et al.
Publicado: (2022) -
Machine learning meets volcano plots: computational discovery of cross-coupling catalysts
por: Meyer, Benjamin, et al.
Publicado: (2018)