Cargando…

Forecasting Unplanned Purchase Behavior under Buy-One Get-One-Free Promotions Using Functional Near-Infrared Spectroscopy

It is very important for consumers to recognize their wrong shopping habits such as unplanned purchase behavior (UPB). The traditional methods used for measuring the UPB in qualitative and quantitative studies have some drawbacks because of human perception and memory. We proposed a UPB identificati...

Descripción completa

Detalles Bibliográficos
Autores principales: Bak, SuJin, Yeu, Minsun, Jeong, Jichai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663223/
https://www.ncbi.nlm.nih.gov/pubmed/36387766
http://dx.doi.org/10.1155/2022/1034983
Descripción
Sumario:It is very important for consumers to recognize their wrong shopping habits such as unplanned purchase behavior (UPB). The traditional methods used for measuring the UPB in qualitative and quantitative studies have some drawbacks because of human perception and memory. We proposed a UPB identification methodology applied with the brain-computer interface technique using a support vector machine (SVM) along with a functional near-infrared spectroscopy (fNIRS). Hemodynamic signals and behavioral data were collected from 33 subjects by performing Task 1 which included the Buy-One-Get-One-Free (BOGOF) and Task 2 which excluded the BOGOF condition. The acquired data were calculated with 6 time-domain features and then classified them using SVM with 10-cross validations. Thereafter, we evaluated whether the results were reliable using the area under the receiver operating characteristic curve (AUC). As a result, we achieved average accuracy greater than 94%, which is reliable because of the AUC values above 0.97. We found that the UPB brain activity was more relevant to Task 1 with the BOGOF condition than with Task 2 in the prefrontal cortex. UPBs were sufficiently derived from self-reported measurement, indicating that the subjects perceived increased impulsivity in the BOGOF condition. Therefore, this study improves the detection and understanding of UPB as a path for a computer-aided detection perspective for rating the severity of UPBs.