Cargando…
Region-specific denoising identifies spatial co-expression patterns and intra-tissue heterogeneity in spatially resolved transcriptomics data
Spatially resolved transcriptomics is a relatively new technique that maps transcriptional information within a tissue. Analysis of these datasets is challenging because gene expression values are highly sparse due to dropout events, and there is a lack of tools to facilitate in silico detection and...
Autores principales: | Wang, Linhua, Maletic-Savatic, Mirjana, Liu, Zhandong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663444/ https://www.ncbi.nlm.nih.gov/pubmed/36376296 http://dx.doi.org/10.1038/s41467-022-34567-0 |
Ejemplares similares
-
Unraveling Spatial Gene Associations with SEAGAL: a Python Package for Spatial Transcriptomics Data Analysis and Visualization
por: Wang, Linhua, et al.
Publicado: (2023) -
Revealing Tissue Heterogeneity and Spatial Dark Genes from Spatially Resolved Transcriptomics by Multiview Graph Networks
por: Li, Ying, et al.
Publicado: (2023) -
SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics
por: Zhu, Jiaqiang, et al.
Publicado: (2023) -
NMRQNet: a deep learning approach for automatic identification and quantification of metabolites using Nuclear Magnetic Resonance (NMR) in human plasma samples
por: Wang, Wanli, et al.
Publicado: (2023) -
Metabolomics of mammalian brain reveals regional differences
por: Choi, William T., et al.
Publicado: (2018)