Cargando…
MLM-based typographical error correction of unstructured medical texts for named entity recognition
BACKGROUND: Unstructured text in medical records, such as Electronic Health Records, contain an enormous amount of valuable information for research; however, it is difficult to extract and structure important information because of frequent typographical errors. Therefore, improving the quality of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670595/ https://www.ncbi.nlm.nih.gov/pubmed/36384464 http://dx.doi.org/10.1186/s12859-022-05035-9 |