Cargando…
A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes
A sensible control of hormone secretion from pancreatic islets requires concerted inter-cellular communications, but a comprehensive picture of the whole islet interactome is presently missing. Single-cell transcriptomics allows to overcome this and we used here a single-cell dataset from type 2 dia...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673496/ https://www.ncbi.nlm.nih.gov/pubmed/36415826 http://dx.doi.org/10.1093/nargab/lqac084 |
_version_ | 1784832952830525440 |
---|---|
author | Bosi, Emanuele Marselli, Lorella Suleiman, Mara Tesi, Marta De Luca, Carmela Del Guerra, Silvia Cnop, Miriam Eizirik, Decio L Marchetti, Piero |
author_facet | Bosi, Emanuele Marselli, Lorella Suleiman, Mara Tesi, Marta De Luca, Carmela Del Guerra, Silvia Cnop, Miriam Eizirik, Decio L Marchetti, Piero |
author_sort | Bosi, Emanuele |
collection | PubMed |
description | A sensible control of hormone secretion from pancreatic islets requires concerted inter-cellular communications, but a comprehensive picture of the whole islet interactome is presently missing. Single-cell transcriptomics allows to overcome this and we used here a single-cell dataset from type 2 diabetic (T2D) and non-diabetic (ND) donors to leverage islet interaction networks. The single-cell dataset contains 3046 cells classified in 7 cell types. The interactions across cell types in T2D and ND were obtained and resulting networks analysed to identify high-centrality genes and altered interactions in T2D. The T2D interactome displayed a higher number of interactions (10 787) than ND (9707); 1289 interactions involved beta cells (1147 in ND). High-centrality genes included EGFR, FGFR1 and FGFR2, important for cell survival and proliferation. In conclusion, this analysis represents the first in silico model of the human islet interactome, enabling the identification of signatures potentially relevant for T2D pathophysiology. |
format | Online Article Text |
id | pubmed-9673496 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-96734962022-11-21 A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes Bosi, Emanuele Marselli, Lorella Suleiman, Mara Tesi, Marta De Luca, Carmela Del Guerra, Silvia Cnop, Miriam Eizirik, Decio L Marchetti, Piero NAR Genom Bioinform Standard Article A sensible control of hormone secretion from pancreatic islets requires concerted inter-cellular communications, but a comprehensive picture of the whole islet interactome is presently missing. Single-cell transcriptomics allows to overcome this and we used here a single-cell dataset from type 2 diabetic (T2D) and non-diabetic (ND) donors to leverage islet interaction networks. The single-cell dataset contains 3046 cells classified in 7 cell types. The interactions across cell types in T2D and ND were obtained and resulting networks analysed to identify high-centrality genes and altered interactions in T2D. The T2D interactome displayed a higher number of interactions (10 787) than ND (9707); 1289 interactions involved beta cells (1147 in ND). High-centrality genes included EGFR, FGFR1 and FGFR2, important for cell survival and proliferation. In conclusion, this analysis represents the first in silico model of the human islet interactome, enabling the identification of signatures potentially relevant for T2D pathophysiology. Oxford University Press 2022-11-18 /pmc/articles/PMC9673496/ /pubmed/36415826 http://dx.doi.org/10.1093/nargab/lqac084 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Standard Article Bosi, Emanuele Marselli, Lorella Suleiman, Mara Tesi, Marta De Luca, Carmela Del Guerra, Silvia Cnop, Miriam Eizirik, Decio L Marchetti, Piero A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes |
title | A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes |
title_full | A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes |
title_fullStr | A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes |
title_full_unstemmed | A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes |
title_short | A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes |
title_sort | single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes |
topic | Standard Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673496/ https://www.ncbi.nlm.nih.gov/pubmed/36415826 http://dx.doi.org/10.1093/nargab/lqac084 |
work_keys_str_mv | AT bosiemanuele asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT marsellilorella asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT suleimanmara asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT tesimarta asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT delucacarmela asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT delguerrasilvia asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT cnopmiriam asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT eizirikdeciol asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT marchettipiero asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT bosiemanuele singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT marsellilorella singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT suleimanmara singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT tesimarta singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT delucacarmela singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT delguerrasilvia singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT cnopmiriam singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT eizirikdeciol singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes AT marchettipiero singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes |