Cargando…

A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes

A sensible control of hormone secretion from pancreatic islets requires concerted inter-cellular communications, but a comprehensive picture of the whole islet interactome is presently missing. Single-cell transcriptomics allows to overcome this and we used here a single-cell dataset from type 2 dia...

Descripción completa

Detalles Bibliográficos
Autores principales: Bosi, Emanuele, Marselli, Lorella, Suleiman, Mara, Tesi, Marta, De Luca, Carmela, Del Guerra, Silvia, Cnop, Miriam, Eizirik, Decio L, Marchetti, Piero
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673496/
https://www.ncbi.nlm.nih.gov/pubmed/36415826
http://dx.doi.org/10.1093/nargab/lqac084
_version_ 1784832952830525440
author Bosi, Emanuele
Marselli, Lorella
Suleiman, Mara
Tesi, Marta
De Luca, Carmela
Del Guerra, Silvia
Cnop, Miriam
Eizirik, Decio L
Marchetti, Piero
author_facet Bosi, Emanuele
Marselli, Lorella
Suleiman, Mara
Tesi, Marta
De Luca, Carmela
Del Guerra, Silvia
Cnop, Miriam
Eizirik, Decio L
Marchetti, Piero
author_sort Bosi, Emanuele
collection PubMed
description A sensible control of hormone secretion from pancreatic islets requires concerted inter-cellular communications, but a comprehensive picture of the whole islet interactome is presently missing. Single-cell transcriptomics allows to overcome this and we used here a single-cell dataset from type 2 diabetic (T2D) and non-diabetic (ND) donors to leverage islet interaction networks. The single-cell dataset contains 3046 cells classified in 7 cell types. The interactions across cell types in T2D and ND were obtained and resulting networks analysed to identify high-centrality genes and altered interactions in T2D. The T2D interactome displayed a higher number of interactions (10 787) than ND (9707); 1289 interactions involved beta cells (1147 in ND). High-centrality genes included EGFR, FGFR1 and FGFR2, important for cell survival and proliferation. In conclusion, this analysis represents the first in silico model of the human islet interactome, enabling the identification of signatures potentially relevant for T2D pathophysiology.
format Online
Article
Text
id pubmed-9673496
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-96734962022-11-21 A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes Bosi, Emanuele Marselli, Lorella Suleiman, Mara Tesi, Marta De Luca, Carmela Del Guerra, Silvia Cnop, Miriam Eizirik, Decio L Marchetti, Piero NAR Genom Bioinform Standard Article A sensible control of hormone secretion from pancreatic islets requires concerted inter-cellular communications, but a comprehensive picture of the whole islet interactome is presently missing. Single-cell transcriptomics allows to overcome this and we used here a single-cell dataset from type 2 diabetic (T2D) and non-diabetic (ND) donors to leverage islet interaction networks. The single-cell dataset contains 3046 cells classified in 7 cell types. The interactions across cell types in T2D and ND were obtained and resulting networks analysed to identify high-centrality genes and altered interactions in T2D. The T2D interactome displayed a higher number of interactions (10 787) than ND (9707); 1289 interactions involved beta cells (1147 in ND). High-centrality genes included EGFR, FGFR1 and FGFR2, important for cell survival and proliferation. In conclusion, this analysis represents the first in silico model of the human islet interactome, enabling the identification of signatures potentially relevant for T2D pathophysiology. Oxford University Press 2022-11-18 /pmc/articles/PMC9673496/ /pubmed/36415826 http://dx.doi.org/10.1093/nargab/lqac084 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Standard Article
Bosi, Emanuele
Marselli, Lorella
Suleiman, Mara
Tesi, Marta
De Luca, Carmela
Del Guerra, Silvia
Cnop, Miriam
Eizirik, Decio L
Marchetti, Piero
A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes
title A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes
title_full A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes
title_fullStr A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes
title_full_unstemmed A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes
title_short A single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes
title_sort single-cell human islet interactome atlas identifies disrupted autocrine and paracrine communications in type 2 diabetes
topic Standard Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673496/
https://www.ncbi.nlm.nih.gov/pubmed/36415826
http://dx.doi.org/10.1093/nargab/lqac084
work_keys_str_mv AT bosiemanuele asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT marsellilorella asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT suleimanmara asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT tesimarta asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT delucacarmela asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT delguerrasilvia asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT cnopmiriam asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT eizirikdeciol asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT marchettipiero asinglecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT bosiemanuele singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT marsellilorella singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT suleimanmara singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT tesimarta singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT delucacarmela singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT delguerrasilvia singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT cnopmiriam singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT eizirikdeciol singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes
AT marchettipiero singlecellhumanisletinteractomeatlasidentifiesdisruptedautocrineandparacrinecommunicationsintype2diabetes