Cargando…
Accessing chiral sulfones bearing quaternary carbon stereocenters via photoinduced radical sulfur dioxide insertion and Truce–Smiles rearrangement
From the viewpoint of synthetic accessibility and functional group compatibility, photoredox-catalyzed sulfur dioxide insertion strategy enables in situ generation of functionalized sulfonyl radicals from easily accessible starting materials under mild conditions, thereby conferring broader applicat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674831/ https://www.ncbi.nlm.nih.gov/pubmed/36400779 http://dx.doi.org/10.1038/s41467-022-34836-y |
Sumario: | From the viewpoint of synthetic accessibility and functional group compatibility, photoredox-catalyzed sulfur dioxide insertion strategy enables in situ generation of functionalized sulfonyl radicals from easily accessible starting materials under mild conditions, thereby conferring broader application potential. Here we present two complementary photoinduced sulfur dioxide insertion systems to trigger radical asymmetric Truce–Smiles rearrangements for preparing a variety of chiral sulfones that bear a quaternary carbon stereocenter. This protocol features broad substrate scope and excellent stereospecificity. Aside from scalability, the introduction of a quaternary carbon stereocenter at position β to bioactive molecule-derived sulfones further demonstrates the practicality and potential of this methodology. |
---|