Cargando…
Implementing Multiple Imputation for Missing Data in Longitudinal Studies When Models are Not Feasible: An Example Using the Random Hot Deck Approach
PURPOSE: Researchers often use model-based multiple imputation to handle missing at random data to minimize bias. However, constraints within the data may sometimes result in implausible values, making model-based imputation infeasible. In these contexts, we illustrate how random hot deck imputation...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675352/ https://www.ncbi.nlm.nih.gov/pubmed/36411940 http://dx.doi.org/10.2147/CLEP.S368303 |