Cargando…
Implementing Multiple Imputation for Missing Data in Longitudinal Studies When Models are Not Feasible: An Example Using the Random Hot Deck Approach
PURPOSE: Researchers often use model-based multiple imputation to handle missing at random data to minimize bias. However, constraints within the data may sometimes result in implausible values, making model-based imputation infeasible. In these contexts, we illustrate how random hot deck imputation...
Autores principales: | Wang, Chinchin, Stokes, Tyrel, Steele, Russell J, Wedderkopp, Niels, Shrier, Ian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675352/ https://www.ncbi.nlm.nih.gov/pubmed/36411940 http://dx.doi.org/10.2147/CLEP.S368303 |
Ejemplares similares
-
Causal simulation experiments: Lessons from bias amplification
por: Stokes, Tyrel, et al.
Publicado: (2021) -
Multiple Imputation of Missing Composite Outcomes in Longitudinal Data
por: O’Keeffe, Aidan G., et al.
Publicado: (2016) -
No associations between C-reactive protein and spinal pain trajectories in children and adolescents (CHAMPS study-DK)
por: Beynon, Amber M., et al.
Publicado: (2022) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
Multiple imputation for handling missing outcome data when estimating the relative risk
por: Sullivan, Thomas R., et al.
Publicado: (2017)