Cargando…
Fusing compressed deep ConvNets with a self-normalizing residual block and alpha dropout for a cost-efficient classification and diagnosis of gastrointestinal tract diseases
The challenging task of diagnosing gastrointestinal (GI) tracts recently became a popular research topic, where most researchers performed extraordinary feats using numerous deep learning (DL) and computer vision techniques to achieve state-of-the-art (SOTA) diagnostic performance based on accuracy....
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677079/ https://www.ncbi.nlm.nih.gov/pubmed/36420314 http://dx.doi.org/10.1016/j.mex.2022.101925 |