Cargando…

Fusing compressed deep ConvNets with a self-normalizing residual block and alpha dropout for a cost-efficient classification and diagnosis of gastrointestinal tract diseases

The challenging task of diagnosing gastrointestinal (GI) tracts recently became a popular research topic, where most researchers performed extraordinary feats using numerous deep learning (DL) and computer vision techniques to achieve state-of-the-art (SOTA) diagnostic performance based on accuracy....

Descripción completa

Detalles Bibliográficos
Autor principal: Montalbo, Francis Jesmar P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677079/
https://www.ncbi.nlm.nih.gov/pubmed/36420314
http://dx.doi.org/10.1016/j.mex.2022.101925