Cargando…
Fusing compressed deep ConvNets with a self-normalizing residual block and alpha dropout for a cost-efficient classification and diagnosis of gastrointestinal tract diseases
The challenging task of diagnosing gastrointestinal (GI) tracts recently became a popular research topic, where most researchers performed extraordinary feats using numerous deep learning (DL) and computer vision techniques to achieve state-of-the-art (SOTA) diagnostic performance based on accuracy....
Autor principal: | Montalbo, Francis Jesmar P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677079/ https://www.ncbi.nlm.nih.gov/pubmed/36420314 http://dx.doi.org/10.1016/j.mex.2022.101925 |
Ejemplares similares
-
Automating mosquito taxonomy by compressing and enhancing a feature fused EfficientNet with knowledge distillation and a novel residual skip block
por: Montalbo, Francis Jesmar P.
Publicado: (2023) -
Incep-EEGNet: A ConvNet for Motor Imagery Decoding
por: Riyad, Mouad, et al.
Publicado: (2020) -
PCA driven mixed filter pruning for efficient convNets
por: Ahmed, Waqas, et al.
Publicado: (2022) -
ConvNet and LSH-Based Visual Localization Using Localized Sequence Matching †
por: Qiao, Yongliang, et al.
Publicado: (2019) -
Enhancement of Patient Facial Recognition through Deep Learning Algorithm: ConvNet
por: Onyema, Edeh Michael, et al.
Publicado: (2021)