Cargando…
How does the structure of data impact cell–cell similarity? Evaluating how structural properties influence the performance of proximity metrics in single cell RNA-seq data
Accurately identifying cell-populations is paramount to the quality of downstream analyses and overall interpretations of single-cell RNA-seq (scRNA-seq) datasets but remains a challenge. The quality of single-cell clustering depends on the proximity metric used to generate cell-to-cell distances. A...
Autores principales: | Watson, Ebony Rose, Mora, Ariane, Taherian Fard, Atefeh, Mar, Jessica Cara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677483/ https://www.ncbi.nlm.nih.gov/pubmed/36151725 http://dx.doi.org/10.1093/bib/bbac387 |
Ejemplares similares
-
Computational Methods for Single-Cell Imaging and Omics Data Integration
por: Watson, Ebony Rose, et al.
Publicado: (2022) -
Measuring cell-to-cell expression variability in single-cell RNA-sequencing data: a comparative analysis and applications to B cell aging
por: Zheng, Huiwen, et al.
Publicado: (2023) -
scShapes: a statistical framework for identifying distribution shapes in single-cell RNA-sequencing data
por: Dharmaratne, Malindrie, et al.
Publicado: (2023) -
Integrated analysis of multimodal single-cell data with structural similarity
por: Cao, Yingxin, et al.
Publicado: (2022) -
Protein Docking by the Interface Structure Similarity: How Much Structure Is Needed?
por: Sinha, Rohita, et al.
Publicado: (2012)