Cargando…
Usnic Acid extends healthspan and improves the neurodegeneration diseases via mTOR/PHA-4 signaling pathway in Caenorhabditis elegans
The Mammalian/mechanistic target of rapamycin (mTOR) played a central role in cellular survival and aging. Inhibition of mTOR had been proposed as a reasonable strategy to promote lifespan and delay age-related diseases in evolutionarily diverse organisms. The study showed that lifespan extension an...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679492/ https://www.ncbi.nlm.nih.gov/pubmed/36425761 http://dx.doi.org/10.1016/j.isci.2022.105539 |
Sumario: | The Mammalian/mechanistic target of rapamycin (mTOR) played a central role in cellular survival and aging. Inhibition of mTOR had been proposed as a reasonable strategy to promote lifespan and delay age-related diseases in evolutionarily diverse organisms. The study showed that lifespan extension and age-related diseases improvement could be achieved by targeting evolutionarily conserved mTOR pathways and mechanisms using pharmacological interventions. Using this approach in Caenorhabditis elegans, We found that 2 μM Usnic Acid significantly extended the healthy lifespan in wild-type animals. Furthermore, via genetic screen, we showed that Usnic Acid acted on mTOR, which was followed by the activation of PHA-4/Foxa to extend the healthy lifespan. Intriguingly, Usnic Acid also delayed neurodegeneration diseases such as Alzheimer’s and polyglutamine disease through mTOR-dependent manner. Our work suggested that Usnic Acid might be a viable candidate for the prevention and treatment of aging and age-related diseases. |
---|