Cargando…
Learning deep representations of enzyme thermal adaptation
Temperature is a fundamental environmental factor that shapes the evolution of organisms. Learning thermal determinants of protein sequences in evolution thus has profound significance for basic biology, drug discovery, and protein engineering. Here, we use a data set of over 3 million BRENDA enzyme...
Autores principales: | Li, Gang, Buric, Filip, Zrimec, Jan, Viknander, Sandra, Nielsen, Jens, Zelezniak, Aleksej, Engqvist, Martin K. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679980/ https://www.ncbi.nlm.nih.gov/pubmed/36261883 http://dx.doi.org/10.1002/pro.4480 |
Ejemplares similares
-
Parallel Factor Analysis Enables Quantification and Identification of Highly Convolved Data-Independent-Acquired Protein Spectra
por: Buric, Filip, et al.
Publicado: (2020) -
Learning the Regulatory Code of Gene Expression
por: Zrimec, Jan, et al.
Publicado: (2021) -
Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure
por: Zrimec, Jan, et al.
Publicado: (2020) -
Performance of Regression Models as a Function of Experiment
Noise
por: Li, Gang, et al.
Publicado: (2021) -
Bayesian genome scale modelling identifies thermal determinants of yeast metabolism
por: Li, Gang, et al.
Publicado: (2021)