Cargando…

Mass photometry reveals SARS-CoV-2 spike stabilisation to impede ACE2 binding through altered conformational dynamics

Here we show using mass photometry how proline substitutions, commonly used for SARS-CoV-2 spike stabilisation in vaccine design, directly affects ACE2 receptor interactions via dynamics of open and closed states. Conformational changes and ACE2 binding were influenced by spike variant and temperatu...

Descripción completa

Detalles Bibliográficos
Autores principales: Burnap, Sean A., Struwe, Weston B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680610/
https://www.ncbi.nlm.nih.gov/pubmed/36317551
http://dx.doi.org/10.1039/d2cc04711j
_version_ 1784834458900234240
author Burnap, Sean A.
Struwe, Weston B.
author_facet Burnap, Sean A.
Struwe, Weston B.
author_sort Burnap, Sean A.
collection PubMed
description Here we show using mass photometry how proline substitutions, commonly used for SARS-CoV-2 spike stabilisation in vaccine design, directly affects ACE2 receptor interactions via dynamics of open and closed states. Conformational changes and ACE2 binding were influenced by spike variant and temperature, but independent of site-specific N-glycosylation.
format Online
Article
Text
id pubmed-9680610
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-96806102022-12-08 Mass photometry reveals SARS-CoV-2 spike stabilisation to impede ACE2 binding through altered conformational dynamics Burnap, Sean A. Struwe, Weston B. Chem Commun (Camb) Chemistry Here we show using mass photometry how proline substitutions, commonly used for SARS-CoV-2 spike stabilisation in vaccine design, directly affects ACE2 receptor interactions via dynamics of open and closed states. Conformational changes and ACE2 binding were influenced by spike variant and temperature, but independent of site-specific N-glycosylation. The Royal Society of Chemistry 2022-10-28 /pmc/articles/PMC9680610/ /pubmed/36317551 http://dx.doi.org/10.1039/d2cc04711j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Burnap, Sean A.
Struwe, Weston B.
Mass photometry reveals SARS-CoV-2 spike stabilisation to impede ACE2 binding through altered conformational dynamics
title Mass photometry reveals SARS-CoV-2 spike stabilisation to impede ACE2 binding through altered conformational dynamics
title_full Mass photometry reveals SARS-CoV-2 spike stabilisation to impede ACE2 binding through altered conformational dynamics
title_fullStr Mass photometry reveals SARS-CoV-2 spike stabilisation to impede ACE2 binding through altered conformational dynamics
title_full_unstemmed Mass photometry reveals SARS-CoV-2 spike stabilisation to impede ACE2 binding through altered conformational dynamics
title_short Mass photometry reveals SARS-CoV-2 spike stabilisation to impede ACE2 binding through altered conformational dynamics
title_sort mass photometry reveals sars-cov-2 spike stabilisation to impede ace2 binding through altered conformational dynamics
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680610/
https://www.ncbi.nlm.nih.gov/pubmed/36317551
http://dx.doi.org/10.1039/d2cc04711j
work_keys_str_mv AT burnapseana massphotometryrevealssarscov2spikestabilisationtoimpedeace2bindingthroughalteredconformationaldynamics
AT struwewestonb massphotometryrevealssarscov2spikestabilisationtoimpedeace2bindingthroughalteredconformationaldynamics