Cargando…

Structural and thermodynamic analyses of the β-to-α transformation in RfaH reveal principles of fold-switching proteins

The two-domain protein RfaH, a paralog of the universally conserved NusG/Spt5 transcription factors, is regulated by autoinhibition coupled to the reversible conformational switch of its 60-residue C-terminal Kyrpides, Ouzounis, Woese (KOW) domain between an α-hairpin and a β-barrel. In contrast, Nu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zuber, Philipp K, Daviter, Tina, Heißmann, Ramona, Persau, Ulrike, Schweimer, Kristian, Knauer, Stefan H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683785/
https://www.ncbi.nlm.nih.gov/pubmed/36255050
http://dx.doi.org/10.7554/eLife.76630
_version_ 1784835127657889792
author Zuber, Philipp K
Daviter, Tina
Heißmann, Ramona
Persau, Ulrike
Schweimer, Kristian
Knauer, Stefan H
author_facet Zuber, Philipp K
Daviter, Tina
Heißmann, Ramona
Persau, Ulrike
Schweimer, Kristian
Knauer, Stefan H
author_sort Zuber, Philipp K
collection PubMed
description The two-domain protein RfaH, a paralog of the universally conserved NusG/Spt5 transcription factors, is regulated by autoinhibition coupled to the reversible conformational switch of its 60-residue C-terminal Kyrpides, Ouzounis, Woese (KOW) domain between an α-hairpin and a β-barrel. In contrast, NusG/Spt5-KOW domains only occur in the β-barrel state. To understand the principles underlying the drastic fold switch in RfaH, we elucidated the thermodynamic stability and the structural dynamics of two RfaH- and four NusG/Spt5-KOW domains by combining biophysical and structural biology methods. We find that the RfaH-KOW β-barrel is thermodynamically less stable than that of most NusG/Spt5-KOWs and we show that it is in equilibrium with a globally unfolded species, which, strikingly, contains two helical regions that prime the transition toward the α-hairpin. Our results suggest that transiently structured elements in the unfolded conformation might drive the global folding transition in metamorphic proteins in general.
format Online
Article
Text
id pubmed-9683785
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-96837852022-11-24 Structural and thermodynamic analyses of the β-to-α transformation in RfaH reveal principles of fold-switching proteins Zuber, Philipp K Daviter, Tina Heißmann, Ramona Persau, Ulrike Schweimer, Kristian Knauer, Stefan H eLife Structural Biology and Molecular Biophysics The two-domain protein RfaH, a paralog of the universally conserved NusG/Spt5 transcription factors, is regulated by autoinhibition coupled to the reversible conformational switch of its 60-residue C-terminal Kyrpides, Ouzounis, Woese (KOW) domain between an α-hairpin and a β-barrel. In contrast, NusG/Spt5-KOW domains only occur in the β-barrel state. To understand the principles underlying the drastic fold switch in RfaH, we elucidated the thermodynamic stability and the structural dynamics of two RfaH- and four NusG/Spt5-KOW domains by combining biophysical and structural biology methods. We find that the RfaH-KOW β-barrel is thermodynamically less stable than that of most NusG/Spt5-KOWs and we show that it is in equilibrium with a globally unfolded species, which, strikingly, contains two helical regions that prime the transition toward the α-hairpin. Our results suggest that transiently structured elements in the unfolded conformation might drive the global folding transition in metamorphic proteins in general. eLife Sciences Publications, Ltd 2022-10-18 /pmc/articles/PMC9683785/ /pubmed/36255050 http://dx.doi.org/10.7554/eLife.76630 Text en © 2022, Zuber et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Structural Biology and Molecular Biophysics
Zuber, Philipp K
Daviter, Tina
Heißmann, Ramona
Persau, Ulrike
Schweimer, Kristian
Knauer, Stefan H
Structural and thermodynamic analyses of the β-to-α transformation in RfaH reveal principles of fold-switching proteins
title Structural and thermodynamic analyses of the β-to-α transformation in RfaH reveal principles of fold-switching proteins
title_full Structural and thermodynamic analyses of the β-to-α transformation in RfaH reveal principles of fold-switching proteins
title_fullStr Structural and thermodynamic analyses of the β-to-α transformation in RfaH reveal principles of fold-switching proteins
title_full_unstemmed Structural and thermodynamic analyses of the β-to-α transformation in RfaH reveal principles of fold-switching proteins
title_short Structural and thermodynamic analyses of the β-to-α transformation in RfaH reveal principles of fold-switching proteins
title_sort structural and thermodynamic analyses of the β-to-α transformation in rfah reveal principles of fold-switching proteins
topic Structural Biology and Molecular Biophysics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683785/
https://www.ncbi.nlm.nih.gov/pubmed/36255050
http://dx.doi.org/10.7554/eLife.76630
work_keys_str_mv AT zuberphilippk structuralandthermodynamicanalysesofthebtoatransformationinrfahrevealprinciplesoffoldswitchingproteins
AT davitertina structuralandthermodynamicanalysesofthebtoatransformationinrfahrevealprinciplesoffoldswitchingproteins
AT heißmannramona structuralandthermodynamicanalysesofthebtoatransformationinrfahrevealprinciplesoffoldswitchingproteins
AT persauulrike structuralandthermodynamicanalysesofthebtoatransformationinrfahrevealprinciplesoffoldswitchingproteins
AT schweimerkristian structuralandthermodynamicanalysesofthebtoatransformationinrfahrevealprinciplesoffoldswitchingproteins
AT knauerstefanh structuralandthermodynamicanalysesofthebtoatransformationinrfahrevealprinciplesoffoldswitchingproteins