Cargando…

Biophysical studies of amorphous protein aggregation and in vivo immunogenicity

Amorphous protein aggregates are oligomers that lack specific, high-order structures. Soluble amorphous aggregates are smaller than ~1 µm. Despite their lack of high-order structure, amorphous protein aggregates exhibit specific biophysical properties such as reversibility of formation, density, con...

Descripción completa

Detalles Bibliográficos
Autor principal: Kuroda, Yutaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684872/
https://www.ncbi.nlm.nih.gov/pubmed/36465085
http://dx.doi.org/10.1007/s12551-022-01011-y
Descripción
Sumario:Amorphous protein aggregates are oligomers that lack specific, high-order structures. Soluble amorphous aggregates are smaller than ~1 µm. Despite their lack of high-order structure, amorphous protein aggregates exhibit specific biophysical properties such as reversibility of formation, density, conformation, and biochemical stability. Our mutational analysis using a Solubility Controlling Peptide (SCP) tag strongly suggests that amorphous aggregation of small globular proteins can significantly increase in vivo immune response and that the magnitude of enhanced immune responses depends on the aggregates’ biophysical and biochemical properties. We propose that SCP tags might help develop subunit (protein) adjuvant-free (immunostimulant-free) vaccines by controlling the aggregation propensity of target proteins.