Cargando…

Differential Levels of Tryptophan–Kynurenine Pathway Metabolites in the Hippocampus, Anterior Temporal Lobe, and Neocortex in an Animal Model of Temporal Lobe Epilepsy

Glutamate-receptor-mediated hyperexcitability contributes to seizure generation in temporal lobe epilepsy (TLE). Tryptophan–kynurenine pathway (TKP) metabolites regulate glutamate receptor activity under physiological conditions. This study was designed to investigate alterations in the levels of TK...

Descripción completa

Detalles Bibliográficos
Autores principales: Dey, Soumil, Dubey, Vivek, Dixit, Aparna Banerjee, Tripathi, Manjari, Chandra, Poodipedi Sarat, Banerjee, Jyotirmoy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688794/
https://www.ncbi.nlm.nih.gov/pubmed/36428989
http://dx.doi.org/10.3390/cells11223560
Descripción
Sumario:Glutamate-receptor-mediated hyperexcitability contributes to seizure generation in temporal lobe epilepsy (TLE). Tryptophan–kynurenine pathway (TKP) metabolites regulate glutamate receptor activity under physiological conditions. This study was designed to investigate alterations in the levels of TKP metabolites and the differential regulation of glutamatergic activity by TKP metabolites in the hippocampus, anterior temporal lobe (ATL), and neocortex samples of a lithium–pilocarpine rat model of TLE. We observed that levels of tryptophan were reduced in the hippocampus and ATL samples but unaltered in the neocortex samples. The levels of kynurenic acid were reduced in the hippocampus samples and unaltered in the ATL and neocortex samples of the TLE rats. The levels of kynurenine were unaltered in all three regions of the TLE rats. The magnitude of reduction in these metabolites in all regions was unaltered in the TLE rats. The frequency and amplitude of spontaneous excitatory postsynaptic currents were enhanced in hippocampus ATL samples but not in the neocortex samples of the TLE rats. The exogenous application of kynurenic acid inhibited glutamatergic activity in the slice preparations of all these regions in both the control and the TLE rats. However, the magnitude of reduction in the frequency of kynurenic acid was higher in the hippocampus (18.44 ± 2.6% in control vs. 30.02 ± 1.5 in TLE rats) and ATL (16.31 ± 0.91% in control vs. 29.82 ± 3.08% in TLE rats) samples of the TLE rats. These findings suggest the differential regulation of glutamatergic activity by TKP metabolites in the hippocampus, ATL, and neocortex of TLE rats.