Cargando…

Efficient Utilization of Fruit Peels for the Bioproduction of D-Allulose and D-Mannitol

Currently, the demand for low-calorie sweeteners has grown dramatically because consumers are more mindful of their health than they used to be. Therefore, bioproduction of low-calorie sweeteners from low-cost raw materials becomes a hot spot. In this study, a two-stage strategy was established to e...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jin, Chen, Jiajun, Xu, Wei, Zhang, Wenli, Chen, Yeming, Mu, Wanmeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689084/
https://www.ncbi.nlm.nih.gov/pubmed/36429205
http://dx.doi.org/10.3390/foods11223613
Descripción
Sumario:Currently, the demand for low-calorie sweeteners has grown dramatically because consumers are more mindful of their health than they used to be. Therefore, bioproduction of low-calorie sweeteners from low-cost raw materials becomes a hot spot. In this study, a two-stage strategy was established to efficiently utilize D-fructose from fruit and vegetable wastes. Firstly, ketose 3-epimerase was used to produce D-allulose from D-fructose of pear peels. Secondly, the residual D-fructose was converted to D-mannitol by the engineered strain co-expression of D-mannitol 2-dehydrogenase and formate dehydrogenase. Approximately 29.4% D-fructose of pear peels was converted to D-allulose. Subsequently, under optimal conditions (35 °C, pH 6.5, 1 mM Mn(2+), 2 g/L dry cells), almost all the residual D-fructose was transformed into D-mannitol with a 93.5% conversion rate. Eventually, from 1 kg fresh pear peel, it could produce 10.8 g of D-allulose and 24.6 g of D-mannitol. This bioprocess strategy provides a vital method to biosynthesize high-value functional sugars from low-cost biomass.