Cargando…
Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning
From the computational point of view, musculoskeletal control is the problem of controlling high degrees of freedom and dynamic multi-body system that is driven by redundant muscle units. A critical challenge in the control perspective of skeletal joints with antagonistic muscle pairs is finding met...
Autores principales: | Denizdurduran, Berat, Markram, Henry, Gewaltig, Marc-Oliver |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9691497/ https://www.ncbi.nlm.nih.gov/pubmed/35951117 http://dx.doi.org/10.1007/s00422-022-00940-x |
Ejemplares similares
-
Correction: Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning
por: Denizdurduran, Berat, et al.
Publicado: (2022) -
A Cell Atlas for the Mouse Brain
por: Erö, Csaba, et al.
Publicado: (2018) -
Corrigendum: A Cell Atlas for the Mouse Brain
por: Erö, Csaba, et al.
Publicado: (2019) -
Deep Reinforcement Learning Based Trajectory Planning Under Uncertain Constraints
por: Chen, Lienhung, et al.
Publicado: (2022) -
Learning to Ascend Stairs and Ramps: Deep Reinforcement Learning for a Physics-Based Human Musculoskeletal Model
por: Adriaenssens, Aurelien J. C., et al.
Publicado: (2022)