Cargando…
Potential of Microalgae Extracts for Food and Feed Supplementation—A Promising Source of Antioxidant and Anti-Inflammatory Compounds
Microalgae are known producers of antioxidant and anti-inflammatory compounds, making them natural alternatives to be used as food and feed functional ingredients. This study aimed to valorise biomass and exploit new applications and commercial value for four commercially available microalgae: Isoch...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693645/ https://www.ncbi.nlm.nih.gov/pubmed/36431036 http://dx.doi.org/10.3390/life12111901 |
Sumario: | Microalgae are known producers of antioxidant and anti-inflammatory compounds, making them natural alternatives to be used as food and feed functional ingredients. This study aimed to valorise biomass and exploit new applications and commercial value for four commercially available microalgae: Isochrysis galbana, Nannochloropsis sp., Tetraselmis sp., and Phaeodactylum tricornutum. For that, five extracts were obtained: acetone (A), ethanol (E), water (W), ethanol:water (EW). The antioxidant capacity (ABTS(•+)/DPPH(•)/(•)NO/O(2)(•−)/ORAC-FL) and anti-inflammatory capacity (HBRC/COX-2) of the extracts were screened. The general biochemical composition (carbohydrates, soluble proteins, and lipids) and the main groups of bioactive compounds (carotenoids, phenolic compounds, and peptides) of extracts were quantified. The results of antioxidant assays revealed the potential of some microalgae extracts: in ABTS(•+), Nannochloropsis sp. E and Tetraselmis sp. A, E, and P; in DPPH(•), Tetraselmis sp. A and E; in (•)NO, P. tricornutum E and EW; in O(2)(•−), Tetraselmis sp. W; and in ORAC-FL, I. galbana EW and P. tricornutum EW. Concerning anti-inflammatory capacity, P. tricornutum EW and Tetraselmis sp. W showed a promising HBRC protective effect and COX-2 inhibition. Hence, Tetraselmis sp. and P. tricornutum extracts seem to have potential to be incorporated as feed and food functional ingredients and preservatives. |
---|