Cargando…

Aging Impairs Adaptive Unfolded Protein Response and Drives Beta Cell Dedifferentiation in Humans

CONTEXT: Diabetes is an age-related disease; however, the mechanism underlying senescent beta cell failure is still unknown. OBJECTIVE: The present study was designed to investigate whether and how the differentiated state was altered in senescent human beta cells by excluding the effects of impaire...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Jiaxi, Ni, Qicheng, Sun, Jiajun, Xie, Jing, Liu, Jianmin, Ning, Guang, Wang, Weiqing, Wang, Qidi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693768/
https://www.ncbi.nlm.nih.gov/pubmed/36125175
http://dx.doi.org/10.1210/clinem/dgac535
Descripción
Sumario:CONTEXT: Diabetes is an age-related disease; however, the mechanism underlying senescent beta cell failure is still unknown. OBJECTIVE: The present study was designed to investigate whether and how the differentiated state was altered in senescent human beta cells by excluding the effects of impaired glucose tolerance. METHODS: We calculated the percentage of hormone-negative/chromogranin A–positive endocrine cells and evaluated the expressions of forkhead box O1 (FoxO1) and Urocortin 3 (UCN3) in islets from 31 nondiabetic individuals, divided into young (<40 years), middle-aged (40-60 years) and elderly (>60 years) groups. We also assessed adaptive unfolded protein response markers glucose-regulated protein 94 (GRP94), and spliced X-box binding protein 1 (XBP1s) in senescent beta cells and their possible contributions to maintaining beta cell identity and differentiation state. RESULTS: We found an almost 2-fold increase in the proportion of dedifferentiated cells in elderly and middle-aged groups compared with the young group (3.1 ± 1.0% and 3.0 ± 0.9% vs 1.7 ± 0.5%, P < .001). This was accompanied by inactivation of FoxO1 and loss of UCN3 expression in senescent human beta cells. In addition, we demonstrated that the expression levels of adaptive unfolded protein response (UPR) components GRP94 and XBP1s declined with age. In vitro data showed knockdown GRP94 in Min6-triggered cells to dedifferentiate and acquire progenitor features, while restored GRP94 levels in H(2)O(2)-induced senescent Min6 cells rescued beta cell identity. CONCLUSION: Our finding highlights that the failure to establish proper adaptive UPR in senescent human beta cells shifts their differentiated states, possibly representing a crucial step in the pathogenesis of age-related beta cell failure.