Cargando…
A Generic Image Processing Pipeline for Enhancing Accuracy and Robustness of Visual Odometry
The accuracy of pose estimation from feature-based Visual Odometry (VO) algorithms is affected by several factors such as lighting conditions and outliers in the matched features. In this paper, a generic image processing pipeline is proposed to enhance the accuracy and robustness of feature-based V...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695527/ https://www.ncbi.nlm.nih.gov/pubmed/36433563 http://dx.doi.org/10.3390/s22228967 |
_version_ | 1784838083064102912 |
---|---|
author | Sabry, Mohamed Osman, Mostafa Hussein, Ahmed Mehrez, Mohamed W. Jeon, Soo Melek, William |
author_facet | Sabry, Mohamed Osman, Mostafa Hussein, Ahmed Mehrez, Mohamed W. Jeon, Soo Melek, William |
author_sort | Sabry, Mohamed |
collection | PubMed |
description | The accuracy of pose estimation from feature-based Visual Odometry (VO) algorithms is affected by several factors such as lighting conditions and outliers in the matched features. In this paper, a generic image processing pipeline is proposed to enhance the accuracy and robustness of feature-based VO algorithms. The pipeline consists of three stages, each addressing a problem that affects the performance of VO algorithms. The first stage tackles the lighting condition problem, where a filter called Contrast Limited Adaptive Histogram Equalization (CLAHE) is applied to the images to overcome changes in lighting in the environment. The second stage uses the Suppression via Square Covering (SSC) algorithm to ensure the features are distributed properly over the images. The last stage proposes a novel outliers rejection approach called the Angle-based Outlier Rejection (AOR) algorithm to remove the outliers generated in the feature matching process. The proposed pipeline is generic and modular and can be integrated with any type of feature-based VO (monocular, RGB-D, or stereo). The efficiency of the proposed pipeline is validated using sequences from KITTI (for stereo VO) and TUM (for RGB-D VO) datasets, as well as experimental sequences using an omnidirectional mobile robot (for monocular VO). The obtained results showed the performance gained by enhancing the accuracy and robustness of the VO algorithms without compromising on the computational cost using the proposed pipeline. The results are substantially better as opposed to not using the pipeline. |
format | Online Article Text |
id | pubmed-9695527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96955272022-11-26 A Generic Image Processing Pipeline for Enhancing Accuracy and Robustness of Visual Odometry Sabry, Mohamed Osman, Mostafa Hussein, Ahmed Mehrez, Mohamed W. Jeon, Soo Melek, William Sensors (Basel) Article The accuracy of pose estimation from feature-based Visual Odometry (VO) algorithms is affected by several factors such as lighting conditions and outliers in the matched features. In this paper, a generic image processing pipeline is proposed to enhance the accuracy and robustness of feature-based VO algorithms. The pipeline consists of three stages, each addressing a problem that affects the performance of VO algorithms. The first stage tackles the lighting condition problem, where a filter called Contrast Limited Adaptive Histogram Equalization (CLAHE) is applied to the images to overcome changes in lighting in the environment. The second stage uses the Suppression via Square Covering (SSC) algorithm to ensure the features are distributed properly over the images. The last stage proposes a novel outliers rejection approach called the Angle-based Outlier Rejection (AOR) algorithm to remove the outliers generated in the feature matching process. The proposed pipeline is generic and modular and can be integrated with any type of feature-based VO (monocular, RGB-D, or stereo). The efficiency of the proposed pipeline is validated using sequences from KITTI (for stereo VO) and TUM (for RGB-D VO) datasets, as well as experimental sequences using an omnidirectional mobile robot (for monocular VO). The obtained results showed the performance gained by enhancing the accuracy and robustness of the VO algorithms without compromising on the computational cost using the proposed pipeline. The results are substantially better as opposed to not using the pipeline. MDPI 2022-11-19 /pmc/articles/PMC9695527/ /pubmed/36433563 http://dx.doi.org/10.3390/s22228967 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sabry, Mohamed Osman, Mostafa Hussein, Ahmed Mehrez, Mohamed W. Jeon, Soo Melek, William A Generic Image Processing Pipeline for Enhancing Accuracy and Robustness of Visual Odometry |
title | A Generic Image Processing Pipeline for Enhancing Accuracy and Robustness of Visual Odometry |
title_full | A Generic Image Processing Pipeline for Enhancing Accuracy and Robustness of Visual Odometry |
title_fullStr | A Generic Image Processing Pipeline for Enhancing Accuracy and Robustness of Visual Odometry |
title_full_unstemmed | A Generic Image Processing Pipeline for Enhancing Accuracy and Robustness of Visual Odometry |
title_short | A Generic Image Processing Pipeline for Enhancing Accuracy and Robustness of Visual Odometry |
title_sort | generic image processing pipeline for enhancing accuracy and robustness of visual odometry |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695527/ https://www.ncbi.nlm.nih.gov/pubmed/36433563 http://dx.doi.org/10.3390/s22228967 |
work_keys_str_mv | AT sabrymohamed agenericimageprocessingpipelineforenhancingaccuracyandrobustnessofvisualodometry AT osmanmostafa agenericimageprocessingpipelineforenhancingaccuracyandrobustnessofvisualodometry AT husseinahmed agenericimageprocessingpipelineforenhancingaccuracyandrobustnessofvisualodometry AT mehrezmohamedw agenericimageprocessingpipelineforenhancingaccuracyandrobustnessofvisualodometry AT jeonsoo agenericimageprocessingpipelineforenhancingaccuracyandrobustnessofvisualodometry AT melekwilliam agenericimageprocessingpipelineforenhancingaccuracyandrobustnessofvisualodometry AT sabrymohamed genericimageprocessingpipelineforenhancingaccuracyandrobustnessofvisualodometry AT osmanmostafa genericimageprocessingpipelineforenhancingaccuracyandrobustnessofvisualodometry AT husseinahmed genericimageprocessingpipelineforenhancingaccuracyandrobustnessofvisualodometry AT mehrezmohamedw genericimageprocessingpipelineforenhancingaccuracyandrobustnessofvisualodometry AT jeonsoo genericimageprocessingpipelineforenhancingaccuracyandrobustnessofvisualodometry AT melekwilliam genericimageprocessingpipelineforenhancingaccuracyandrobustnessofvisualodometry |