Cargando…

Nonlinear and Dotted Defect Detection with CNN for Multi-Vision-Based Mask Inspection

This paper addresses the problem of nonlinear and dotted defect detection for multi-vision-based mask inspection systems in mask manufacturing lines. As the mask production amounts increased due to the spread of COVID-19 around the world, the mask inspection systems require more efficient defect det...

Descripción completa

Detalles Bibliográficos
Autores principales: Woo, Jimyeong, Lee, Heoncheol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695745/
https://www.ncbi.nlm.nih.gov/pubmed/36433539
http://dx.doi.org/10.3390/s22228945
Descripción
Sumario:This paper addresses the problem of nonlinear and dotted defect detection for multi-vision-based mask inspection systems in mask manufacturing lines. As the mask production amounts increased due to the spread of COVID-19 around the world, the mask inspection systems require more efficient defect detection algorithms. However, the traditional computer vision detection algorithms suffer from various types and very small sizes of the nonlinear and dotted defects on masks. This paper proposes a deep learning-based mask defect detection method, which includes a convolutional neural network (CNN) and efficient preprocessing. The proposed method was developed to be applied to real manufacturing systems, and thus all the training and inference processes were conducted with real data produced by real mask manufacturing systems. Experimental results show that the nonlinear and dotted defects were successfully detected by the proposed method, and its performance was higher than the previous method.