Cargando…

Deglycosylation Increases the Aggregation and Angiogenic Properties of Mutant Tissue Inhibitor of Metalloproteinase 3 Protein: Implications for Sorsby Fundus Dystrophy

Sorsby fundus dystrophy (SFD) is an autosomal dominant macular disorder caused by mutations in tissue Inhibitor of the metalloproteinase-3 (TIMP3) gene with the onset of symptoms including choroidal neovascularization as early as the second decade of life. We have previously reported that wild-type...

Descripción completa

Detalles Bibliográficos
Autores principales: Qi, Jian Hua, Anand-Apte, Bela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696176/
https://www.ncbi.nlm.nih.gov/pubmed/36430707
http://dx.doi.org/10.3390/ijms232214231
_version_ 1784838242630107136
author Qi, Jian Hua
Anand-Apte, Bela
author_facet Qi, Jian Hua
Anand-Apte, Bela
author_sort Qi, Jian Hua
collection PubMed
description Sorsby fundus dystrophy (SFD) is an autosomal dominant macular disorder caused by mutations in tissue Inhibitor of the metalloproteinase-3 (TIMP3) gene with the onset of symptoms including choroidal neovascularization as early as the second decade of life. We have previously reported that wild-type TIMP3 is an endogenous angiogenesis inhibitor that inhibits Vascular Endothelial Growth Factor (VEGF)-mediated signaling in endothelial cells. In contrast, SFD-related S179C-TIMP3 when expressed in endothelial cells, does not have angiogenesis-inhibitory properties. To evaluate if this is a common feature of TIMP3 mutants associated with SFD, we examined and compared endothelial cells expressing S179C, Y191C and S204C TIMP3 mutants for their angiogenesis-inhibitory function. Western blot analysis, zymography and reverse zymography and migration assays were utilized to evaluate TIMP3 protein, Matrix Metalloproteinase (MMP) and MMP inhibitory activity, VEGF signaling and in vitro migration in endothelial cells expressing (VEGF receptor-2 (VEGFR-2) and wild-type TIMP3 or mutant-TIMP3. We demonstrate that mutant S179C, Y191C- and S204C-TIMP3 all show increased glycosylation and multimerization/aggregation of the TIMP3 protein. In addition, endothelial cells expressing TIMP3 mutations show increased angiogenic activities and elevated VEGFR-2. Removal of N-glycosylation by mutation of Asn(184), the only potential N-glycosylation site in mutant TIMP3, resulted in increased aggregation of TIMP3, further upregulation of VEGFR-2, VEGF-induced phosphorylation of VEGFR2 and VEGF-mediated migration concomitant with reduced MMP inhibitory activity. These results suggest that even though mutant TIMP3 proteins are more glycosylated, post-translational deglycosylation may play a critical role in the aggregation of mutant TIMP3 and contribute to the pathogenesis of SFD. The identification of factors that might contribute to changes in the glycome of patients with SFD will be useful. Future studies will evaluate whether variations in the glycosylation of mutant TIMP3 proteins are contributing to the severity of the disease.
format Online
Article
Text
id pubmed-9696176
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96961762022-11-26 Deglycosylation Increases the Aggregation and Angiogenic Properties of Mutant Tissue Inhibitor of Metalloproteinase 3 Protein: Implications for Sorsby Fundus Dystrophy Qi, Jian Hua Anand-Apte, Bela Int J Mol Sci Article Sorsby fundus dystrophy (SFD) is an autosomal dominant macular disorder caused by mutations in tissue Inhibitor of the metalloproteinase-3 (TIMP3) gene with the onset of symptoms including choroidal neovascularization as early as the second decade of life. We have previously reported that wild-type TIMP3 is an endogenous angiogenesis inhibitor that inhibits Vascular Endothelial Growth Factor (VEGF)-mediated signaling in endothelial cells. In contrast, SFD-related S179C-TIMP3 when expressed in endothelial cells, does not have angiogenesis-inhibitory properties. To evaluate if this is a common feature of TIMP3 mutants associated with SFD, we examined and compared endothelial cells expressing S179C, Y191C and S204C TIMP3 mutants for their angiogenesis-inhibitory function. Western blot analysis, zymography and reverse zymography and migration assays were utilized to evaluate TIMP3 protein, Matrix Metalloproteinase (MMP) and MMP inhibitory activity, VEGF signaling and in vitro migration in endothelial cells expressing (VEGF receptor-2 (VEGFR-2) and wild-type TIMP3 or mutant-TIMP3. We demonstrate that mutant S179C, Y191C- and S204C-TIMP3 all show increased glycosylation and multimerization/aggregation of the TIMP3 protein. In addition, endothelial cells expressing TIMP3 mutations show increased angiogenic activities and elevated VEGFR-2. Removal of N-glycosylation by mutation of Asn(184), the only potential N-glycosylation site in mutant TIMP3, resulted in increased aggregation of TIMP3, further upregulation of VEGFR-2, VEGF-induced phosphorylation of VEGFR2 and VEGF-mediated migration concomitant with reduced MMP inhibitory activity. These results suggest that even though mutant TIMP3 proteins are more glycosylated, post-translational deglycosylation may play a critical role in the aggregation of mutant TIMP3 and contribute to the pathogenesis of SFD. The identification of factors that might contribute to changes in the glycome of patients with SFD will be useful. Future studies will evaluate whether variations in the glycosylation of mutant TIMP3 proteins are contributing to the severity of the disease. MDPI 2022-11-17 /pmc/articles/PMC9696176/ /pubmed/36430707 http://dx.doi.org/10.3390/ijms232214231 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Qi, Jian Hua
Anand-Apte, Bela
Deglycosylation Increases the Aggregation and Angiogenic Properties of Mutant Tissue Inhibitor of Metalloproteinase 3 Protein: Implications for Sorsby Fundus Dystrophy
title Deglycosylation Increases the Aggregation and Angiogenic Properties of Mutant Tissue Inhibitor of Metalloproteinase 3 Protein: Implications for Sorsby Fundus Dystrophy
title_full Deglycosylation Increases the Aggregation and Angiogenic Properties of Mutant Tissue Inhibitor of Metalloproteinase 3 Protein: Implications for Sorsby Fundus Dystrophy
title_fullStr Deglycosylation Increases the Aggregation and Angiogenic Properties of Mutant Tissue Inhibitor of Metalloproteinase 3 Protein: Implications for Sorsby Fundus Dystrophy
title_full_unstemmed Deglycosylation Increases the Aggregation and Angiogenic Properties of Mutant Tissue Inhibitor of Metalloproteinase 3 Protein: Implications for Sorsby Fundus Dystrophy
title_short Deglycosylation Increases the Aggregation and Angiogenic Properties of Mutant Tissue Inhibitor of Metalloproteinase 3 Protein: Implications for Sorsby Fundus Dystrophy
title_sort deglycosylation increases the aggregation and angiogenic properties of mutant tissue inhibitor of metalloproteinase 3 protein: implications for sorsby fundus dystrophy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696176/
https://www.ncbi.nlm.nih.gov/pubmed/36430707
http://dx.doi.org/10.3390/ijms232214231
work_keys_str_mv AT qijianhua deglycosylationincreasestheaggregationandangiogenicpropertiesofmutanttissueinhibitorofmetalloproteinase3proteinimplicationsforsorsbyfundusdystrophy
AT anandaptebela deglycosylationincreasestheaggregationandangiogenicpropertiesofmutanttissueinhibitorofmetalloproteinase3proteinimplicationsforsorsbyfundusdystrophy