Cargando…
Line Shape Analysis and Dynamic Response of Ballastless Track during Jacking Rectification Fixing
In order to study the railway line deformation and dynamic response of ballastless track structure under train load during jacking rectification fixing, a three-dimensional numerical model of the CRTS II slab ballastless track on subgrade is established by using the finite element method. The line d...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696287/ https://www.ncbi.nlm.nih.gov/pubmed/36431750 http://dx.doi.org/10.3390/ma15228265 |
Sumario: | In order to study the railway line deformation and dynamic response of ballastless track structure under train load during jacking rectification fixing, a three-dimensional numerical model of the CRTS II slab ballastless track on subgrade is established by using the finite element method. The line deformation rule and local damage rule of ballastless track under jacking force are analyzed. The dynamic response laws of track structure and subgrade bed are compared considering four different connection modes between the base plate and subgrade bed under different train speeds in the process of jacking rectification fixing. The results show that jacking force and dissociation length have a small influence on the deviation value and the critical jacking force should be smaller than 375 kN in single point jacking. Under the condition of multi-point jacking, when the jacking loading length equals to 5 slabs, the critical jacking force should be smaller than 275 kN and the maximum lateral deviation value is about 22.11 mm. It is necessary to restrict the speed of passing trains to no more than 150 km/h during the jacking rectification fixing for dissociation condition without temporary restraint. When temporary restraint is applied, the speed of the train can be increased appropriately according to the actual situation. The above study results could be used as a theoretical reference for the ballastless track deviation correction. |
---|