Cargando…

Sea Cucumber Saponins Derivatives Alleviate Hepatic Lipid Accumulation Effectively in Fatty Acids-Induced HepG2 Cells and Orotic Acid-Induced Rats

The sulfated echinoside A (EA) and holothurin A (HA) are two prominent saponins in sea cucumber with high hemolytic activity but also superior lipid-lowering activity. Deglycosylated derivatives EA2 and HA2 exhibit low hemolysis compared to EA and HA, but their efficacies on lipid metabolism regulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiaoyue, Zeng, Beibei, Wen, Lu, Zhao, Yingcai, Li, Zhaojie, Xue, Changhu, Zhang, Tiantian, Wang, Yuming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697935/
https://www.ncbi.nlm.nih.gov/pubmed/36355027
http://dx.doi.org/10.3390/md20110703
Descripción
Sumario:The sulfated echinoside A (EA) and holothurin A (HA) are two prominent saponins in sea cucumber with high hemolytic activity but also superior lipid-lowering activity. Deglycosylated derivatives EA2 and HA2 exhibit low hemolysis compared to EA and HA, but their efficacies on lipid metabolism regulation remains unknown. In this study, fatty acids-treated HepG2 cells and orotic acid-treated rats were used to investigate the lipid-lowering effects of sea cucumber saponin derivatives. Both the saponin and derivatives could effectively alleviate lipid accumulation in HepG2 model, especially EA and EA2. Moreover, though the lipid-lowering effect of EA2 was not equal with EA at the same dosage of 0.05% in diet, 0.15% dosage of EA2 significantly reduced hepatic steatosis rate, liver TC and TG contents by 76%, 41.5%, and 63.7%, respectively, compared to control and reversed liver histopathological features to normal degree according to H&E stained sections. Possible mechanisms mainly included enhancement of fatty acids β-oxidation and cholesterol catabolism through bile acids synthesis and excretion, suppression of lipogenesis and cholesterol uptake. It revealed that the efficacy of EA2 on lipid metabolism regulation was dose-dependent, and 0.15% dosage of EA2 possessed better efficacy with lower toxicity compared to 0.05% dosage of EA.