Cargando…

Structural Modelling Prediction of Recombinant Plasmodium falciparum K13-F446I and K13-C580Y Gene by AlphaFold Method and Heterologous Expression in Spodoptera frugiperda 9 Cells

P. falciparum Kelch 13 (Pfk13) is an essential protein that contains BTB and Kelch-repeat propeller domains (KRPD), which was predicted to bind substrate during ubiquitin-dependent degradation pathway. However, the function of Pfk13 and the structural alterations associated with artemisinin resistan...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, He, Feng, Jun, Chen, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698840/
https://www.ncbi.nlm.nih.gov/pubmed/36365022
http://dx.doi.org/10.3390/pathogens11111271
_version_ 1784838920424390656
author Yan, He
Feng, Jun
Chen, Min
author_facet Yan, He
Feng, Jun
Chen, Min
author_sort Yan, He
collection PubMed
description P. falciparum Kelch 13 (Pfk13) is an essential protein that contains BTB and Kelch-repeat propeller domains (KRPD), which was predicted to bind substrate during ubiquitin-dependent degradation pathway. However, the function of Pfk13 and the structural alterations associated with artemisinin resistance mutations remain unknown. Herein, we screened two proteins, namely Pfk13-F446I and Pfk13-C580Y, which are closely associated with artemisinin, for structural prediction analysis. The 389 amino acids from 1011 nt to 2178 nt of KRPD were cloned into pFastBac(TM)1. The recombinant plasmids were heterologously expressed in Spodoptera frugiperda 9 cells (SF9) and a ~44 kDa protein band was yielded by SDS-PAGE and Western Blot. A total of five structure models were generated and predicted by AlphaFold for each protein. The models predicted that Pfk13-F446I would be located in the central protein cavity, proximal to mutations in cysteine residues primarily in β strands. Unlike Pfk13-F446I, the Pfk13-C580Y is located on the small channel that runs through the center of the K13 protein. Interestingly, the hydrogen bond between C580 and C533 in the wide type (WT) was not detected, suggesting that the hydrogen bond may be lost during the mutation. Besides, the Pfk13-F446I and Pfk13-C580Y mutation were found to add 11 and 9 hydrogen bonds variations that may lead to conformational change of the protein structure compared to WT, respectively. Future work should pay more attention to the binding characteristics of those mutations related with KPRD pockets and their binding substrates, which will further clarify the structure and function of Pfk13 and its mutant.
format Online
Article
Text
id pubmed-9698840
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96988402022-11-26 Structural Modelling Prediction of Recombinant Plasmodium falciparum K13-F446I and K13-C580Y Gene by AlphaFold Method and Heterologous Expression in Spodoptera frugiperda 9 Cells Yan, He Feng, Jun Chen, Min Pathogens Article P. falciparum Kelch 13 (Pfk13) is an essential protein that contains BTB and Kelch-repeat propeller domains (KRPD), which was predicted to bind substrate during ubiquitin-dependent degradation pathway. However, the function of Pfk13 and the structural alterations associated with artemisinin resistance mutations remain unknown. Herein, we screened two proteins, namely Pfk13-F446I and Pfk13-C580Y, which are closely associated with artemisinin, for structural prediction analysis. The 389 amino acids from 1011 nt to 2178 nt of KRPD were cloned into pFastBac(TM)1. The recombinant plasmids were heterologously expressed in Spodoptera frugiperda 9 cells (SF9) and a ~44 kDa protein band was yielded by SDS-PAGE and Western Blot. A total of five structure models were generated and predicted by AlphaFold for each protein. The models predicted that Pfk13-F446I would be located in the central protein cavity, proximal to mutations in cysteine residues primarily in β strands. Unlike Pfk13-F446I, the Pfk13-C580Y is located on the small channel that runs through the center of the K13 protein. Interestingly, the hydrogen bond between C580 and C533 in the wide type (WT) was not detected, suggesting that the hydrogen bond may be lost during the mutation. Besides, the Pfk13-F446I and Pfk13-C580Y mutation were found to add 11 and 9 hydrogen bonds variations that may lead to conformational change of the protein structure compared to WT, respectively. Future work should pay more attention to the binding characteristics of those mutations related with KPRD pockets and their binding substrates, which will further clarify the structure and function of Pfk13 and its mutant. MDPI 2022-10-31 /pmc/articles/PMC9698840/ /pubmed/36365022 http://dx.doi.org/10.3390/pathogens11111271 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Yan, He
Feng, Jun
Chen, Min
Structural Modelling Prediction of Recombinant Plasmodium falciparum K13-F446I and K13-C580Y Gene by AlphaFold Method and Heterologous Expression in Spodoptera frugiperda 9 Cells
title Structural Modelling Prediction of Recombinant Plasmodium falciparum K13-F446I and K13-C580Y Gene by AlphaFold Method and Heterologous Expression in Spodoptera frugiperda 9 Cells
title_full Structural Modelling Prediction of Recombinant Plasmodium falciparum K13-F446I and K13-C580Y Gene by AlphaFold Method and Heterologous Expression in Spodoptera frugiperda 9 Cells
title_fullStr Structural Modelling Prediction of Recombinant Plasmodium falciparum K13-F446I and K13-C580Y Gene by AlphaFold Method and Heterologous Expression in Spodoptera frugiperda 9 Cells
title_full_unstemmed Structural Modelling Prediction of Recombinant Plasmodium falciparum K13-F446I and K13-C580Y Gene by AlphaFold Method and Heterologous Expression in Spodoptera frugiperda 9 Cells
title_short Structural Modelling Prediction of Recombinant Plasmodium falciparum K13-F446I and K13-C580Y Gene by AlphaFold Method and Heterologous Expression in Spodoptera frugiperda 9 Cells
title_sort structural modelling prediction of recombinant plasmodium falciparum k13-f446i and k13-c580y gene by alphafold method and heterologous expression in spodoptera frugiperda 9 cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698840/
https://www.ncbi.nlm.nih.gov/pubmed/36365022
http://dx.doi.org/10.3390/pathogens11111271
work_keys_str_mv AT yanhe structuralmodellingpredictionofrecombinantplasmodiumfalciparumk13f446iandk13c580ygenebyalphafoldmethodandheterologousexpressioninspodopterafrugiperda9cells
AT fengjun structuralmodellingpredictionofrecombinantplasmodiumfalciparumk13f446iandk13c580ygenebyalphafoldmethodandheterologousexpressioninspodopterafrugiperda9cells
AT chenmin structuralmodellingpredictionofrecombinantplasmodiumfalciparumk13f446iandk13c580ygenebyalphafoldmethodandheterologousexpressioninspodopterafrugiperda9cells