Cargando…
DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer
Some of the recent studies on drug sensitivity prediction have applied graph neural networks to leverage prior knowledge on the drug structure or gene network, and other studies have focused on the interpretability of the model to delineate the mechanism governing the drug response. However, it is c...
Autores principales: | Shin, Jihye, Piao, Yinhua, Bang, Dongmin, Kim, Sun, Jo, Kyuri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699175/ https://www.ncbi.nlm.nih.gov/pubmed/36430395 http://dx.doi.org/10.3390/ijms232213919 |
Ejemplares similares
-
Biomedical knowledge graph learning for drug repurposing by extending guilt-by-association to multiple layers
por: Bang, Dongmin, et al.
Publicado: (2023) -
Graph Neural Networks to Advance Anticancer Drug Design
por: Rassil, Asmaa, et al.
Publicado: (2020) -
A knowledge graph to interpret clinical proteomics data
por: Santos, Alberto, et al.
Publicado: (2022) -
Interpretable patent recommendation with knowledge graph and deep learning
por: Chen, Han, et al.
Publicado: (2023) -
IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs
por: Du, Zhenyu, et al.
Publicado: (2023)