Cargando…
Method for Keyhole-Free High-Aspect-Ratio Trench Refill by LPCVD
In micro-machined micro-electromechanical systems (MEMS), refilled high-aspect-ratio trench structures are used for different applications. However, these trenches often show keyholes, which have an impact on the performance of the devices. In this paper, explanations are given on keyhole formation,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699232/ https://www.ncbi.nlm.nih.gov/pubmed/36363929 http://dx.doi.org/10.3390/mi13111908 |
_version_ | 1784839021315227648 |
---|---|
author | Veltkamp, Henk-Willem Janssens, Yves L. de Boer, Meint J. Zhao, Yiyuan Wiegerink, Remco J. Tas, Niels R. Lötters, Joost C. |
author_facet | Veltkamp, Henk-Willem Janssens, Yves L. de Boer, Meint J. Zhao, Yiyuan Wiegerink, Remco J. Tas, Niels R. Lötters, Joost C. |
author_sort | Veltkamp, Henk-Willem |
collection | PubMed |
description | In micro-machined micro-electromechanical systems (MEMS), refilled high-aspect-ratio trench structures are used for different applications. However, these trenches often show keyholes, which have an impact on the performance of the devices. In this paper, explanations are given on keyhole formation, and a method is presented for etching positively-tapered high-aspect ratio trenches with an optimised trench entrance to prevent keyhole formation. The trench etch is performed by a two-step Bosch-based process, in which the cycle time, platen power, and process pressure during the etch step of the Bosch cycle are studied to adjust the dimensions of the scallops and their location in the trench sidewall, which control the taper of the trench sidewall. It is demonstrated that the amount of chemical flux, being adjusted by the cycle time of the etch step in the Bosch cycle, relates the scallop height to the sidewall profile angle. The required positive tapering of 88° to 89° for a keyhole-free structure after a trench refill by low-pressure chemical vapour deposition is achieved by lowering the time of the etch step. |
format | Online Article Text |
id | pubmed-9699232 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96992322022-11-26 Method for Keyhole-Free High-Aspect-Ratio Trench Refill by LPCVD Veltkamp, Henk-Willem Janssens, Yves L. de Boer, Meint J. Zhao, Yiyuan Wiegerink, Remco J. Tas, Niels R. Lötters, Joost C. Micromachines (Basel) Article In micro-machined micro-electromechanical systems (MEMS), refilled high-aspect-ratio trench structures are used for different applications. However, these trenches often show keyholes, which have an impact on the performance of the devices. In this paper, explanations are given on keyhole formation, and a method is presented for etching positively-tapered high-aspect ratio trenches with an optimised trench entrance to prevent keyhole formation. The trench etch is performed by a two-step Bosch-based process, in which the cycle time, platen power, and process pressure during the etch step of the Bosch cycle are studied to adjust the dimensions of the scallops and their location in the trench sidewall, which control the taper of the trench sidewall. It is demonstrated that the amount of chemical flux, being adjusted by the cycle time of the etch step in the Bosch cycle, relates the scallop height to the sidewall profile angle. The required positive tapering of 88° to 89° for a keyhole-free structure after a trench refill by low-pressure chemical vapour deposition is achieved by lowering the time of the etch step. MDPI 2022-11-04 /pmc/articles/PMC9699232/ /pubmed/36363929 http://dx.doi.org/10.3390/mi13111908 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Veltkamp, Henk-Willem Janssens, Yves L. de Boer, Meint J. Zhao, Yiyuan Wiegerink, Remco J. Tas, Niels R. Lötters, Joost C. Method for Keyhole-Free High-Aspect-Ratio Trench Refill by LPCVD |
title | Method for Keyhole-Free High-Aspect-Ratio Trench Refill by LPCVD |
title_full | Method for Keyhole-Free High-Aspect-Ratio Trench Refill by LPCVD |
title_fullStr | Method for Keyhole-Free High-Aspect-Ratio Trench Refill by LPCVD |
title_full_unstemmed | Method for Keyhole-Free High-Aspect-Ratio Trench Refill by LPCVD |
title_short | Method for Keyhole-Free High-Aspect-Ratio Trench Refill by LPCVD |
title_sort | method for keyhole-free high-aspect-ratio trench refill by lpcvd |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699232/ https://www.ncbi.nlm.nih.gov/pubmed/36363929 http://dx.doi.org/10.3390/mi13111908 |
work_keys_str_mv | AT veltkamphenkwillem methodforkeyholefreehighaspectratiotrenchrefillbylpcvd AT janssensyvesl methodforkeyholefreehighaspectratiotrenchrefillbylpcvd AT deboermeintj methodforkeyholefreehighaspectratiotrenchrefillbylpcvd AT zhaoyiyuan methodforkeyholefreehighaspectratiotrenchrefillbylpcvd AT wiegerinkremcoj methodforkeyholefreehighaspectratiotrenchrefillbylpcvd AT tasnielsr methodforkeyholefreehighaspectratiotrenchrefillbylpcvd AT lottersjoostc methodforkeyholefreehighaspectratiotrenchrefillbylpcvd |