Cargando…

Assessment of spatial transcriptomics for oncology discovery

Tumor heterogeneity is a major challenge for oncology drug discovery and development. Understanding of the spatial tumor landscape is key to identifying new targets and impactful model systems. Here, we test the utility of spatial transcriptomics (ST) for oncology discovery by profiling 40 tissue se...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyubetskaya, Anna, Rabe, Brian, Fisher, Andrew, Lewin, Anne, Neuhaus, Isaac, Brett, Constance, Brett, Todd, Pereira, Ethel, Golhar, Ryan, Kebede, Sami, Font-Tello, Alba, Mosure, Kathy, Van Wittenberghe, Nicholas, Mavrakis, Konstantinos J., MacIsaac, Kenzie, Chen, Benjamin J., Drokhlyansky, Eugene
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701619/
https://www.ncbi.nlm.nih.gov/pubmed/36452860
http://dx.doi.org/10.1016/j.crmeth.2022.100340
_version_ 1784839573501640704
author Lyubetskaya, Anna
Rabe, Brian
Fisher, Andrew
Lewin, Anne
Neuhaus, Isaac
Brett, Constance
Brett, Todd
Pereira, Ethel
Golhar, Ryan
Kebede, Sami
Font-Tello, Alba
Mosure, Kathy
Van Wittenberghe, Nicholas
Mavrakis, Konstantinos J.
MacIsaac, Kenzie
Chen, Benjamin J.
Drokhlyansky, Eugene
author_facet Lyubetskaya, Anna
Rabe, Brian
Fisher, Andrew
Lewin, Anne
Neuhaus, Isaac
Brett, Constance
Brett, Todd
Pereira, Ethel
Golhar, Ryan
Kebede, Sami
Font-Tello, Alba
Mosure, Kathy
Van Wittenberghe, Nicholas
Mavrakis, Konstantinos J.
MacIsaac, Kenzie
Chen, Benjamin J.
Drokhlyansky, Eugene
author_sort Lyubetskaya, Anna
collection PubMed
description Tumor heterogeneity is a major challenge for oncology drug discovery and development. Understanding of the spatial tumor landscape is key to identifying new targets and impactful model systems. Here, we test the utility of spatial transcriptomics (ST) for oncology discovery by profiling 40 tissue sections and 80,024 capture spots across a diverse set of tissue types, sample formats, and RNA capture chemistries. We verify the accuracy and fidelity of ST by leveraging matched pathology analysis, which provides a ground truth for tissue section composition. We then use spatial data to demonstrate the capture of key tumor depth features, identifying hypoxia, necrosis, vasculature, and extracellular matrix variation. We also leverage spatial context to identify relative cell-type locations showing the anti-correlation of tumor and immune cells in syngeneic cancer models. Lastly, we demonstrate target identification approaches in clinical pancreatic adenocarcinoma samples, highlighting tumor intrinsic biomarkers and paracrine signaling.
format Online
Article
Text
id pubmed-9701619
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-97016192022-11-29 Assessment of spatial transcriptomics for oncology discovery Lyubetskaya, Anna Rabe, Brian Fisher, Andrew Lewin, Anne Neuhaus, Isaac Brett, Constance Brett, Todd Pereira, Ethel Golhar, Ryan Kebede, Sami Font-Tello, Alba Mosure, Kathy Van Wittenberghe, Nicholas Mavrakis, Konstantinos J. MacIsaac, Kenzie Chen, Benjamin J. Drokhlyansky, Eugene Cell Rep Methods Resource Tumor heterogeneity is a major challenge for oncology drug discovery and development. Understanding of the spatial tumor landscape is key to identifying new targets and impactful model systems. Here, we test the utility of spatial transcriptomics (ST) for oncology discovery by profiling 40 tissue sections and 80,024 capture spots across a diverse set of tissue types, sample formats, and RNA capture chemistries. We verify the accuracy and fidelity of ST by leveraging matched pathology analysis, which provides a ground truth for tissue section composition. We then use spatial data to demonstrate the capture of key tumor depth features, identifying hypoxia, necrosis, vasculature, and extracellular matrix variation. We also leverage spatial context to identify relative cell-type locations showing the anti-correlation of tumor and immune cells in syngeneic cancer models. Lastly, we demonstrate target identification approaches in clinical pancreatic adenocarcinoma samples, highlighting tumor intrinsic biomarkers and paracrine signaling. Elsevier 2022-11-15 /pmc/articles/PMC9701619/ /pubmed/36452860 http://dx.doi.org/10.1016/j.crmeth.2022.100340 Text en © 2022 Bristol-Myers Squibb https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Resource
Lyubetskaya, Anna
Rabe, Brian
Fisher, Andrew
Lewin, Anne
Neuhaus, Isaac
Brett, Constance
Brett, Todd
Pereira, Ethel
Golhar, Ryan
Kebede, Sami
Font-Tello, Alba
Mosure, Kathy
Van Wittenberghe, Nicholas
Mavrakis, Konstantinos J.
MacIsaac, Kenzie
Chen, Benjamin J.
Drokhlyansky, Eugene
Assessment of spatial transcriptomics for oncology discovery
title Assessment of spatial transcriptomics for oncology discovery
title_full Assessment of spatial transcriptomics for oncology discovery
title_fullStr Assessment of spatial transcriptomics for oncology discovery
title_full_unstemmed Assessment of spatial transcriptomics for oncology discovery
title_short Assessment of spatial transcriptomics for oncology discovery
title_sort assessment of spatial transcriptomics for oncology discovery
topic Resource
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701619/
https://www.ncbi.nlm.nih.gov/pubmed/36452860
http://dx.doi.org/10.1016/j.crmeth.2022.100340
work_keys_str_mv AT lyubetskayaanna assessmentofspatialtranscriptomicsforoncologydiscovery
AT rabebrian assessmentofspatialtranscriptomicsforoncologydiscovery
AT fisherandrew assessmentofspatialtranscriptomicsforoncologydiscovery
AT lewinanne assessmentofspatialtranscriptomicsforoncologydiscovery
AT neuhausisaac assessmentofspatialtranscriptomicsforoncologydiscovery
AT brettconstance assessmentofspatialtranscriptomicsforoncologydiscovery
AT bretttodd assessmentofspatialtranscriptomicsforoncologydiscovery
AT pereiraethel assessmentofspatialtranscriptomicsforoncologydiscovery
AT golharryan assessmentofspatialtranscriptomicsforoncologydiscovery
AT kebedesami assessmentofspatialtranscriptomicsforoncologydiscovery
AT fonttelloalba assessmentofspatialtranscriptomicsforoncologydiscovery
AT mosurekathy assessmentofspatialtranscriptomicsforoncologydiscovery
AT vanwittenberghenicholas assessmentofspatialtranscriptomicsforoncologydiscovery
AT mavrakiskonstantinosj assessmentofspatialtranscriptomicsforoncologydiscovery
AT macisaackenzie assessmentofspatialtranscriptomicsforoncologydiscovery
AT chenbenjaminj assessmentofspatialtranscriptomicsforoncologydiscovery
AT drokhlyanskyeugene assessmentofspatialtranscriptomicsforoncologydiscovery