Cargando…

Synthesis of activity evaluation of flavonoid derivatives as ɑ-glucosidase inhibitors

Six flavonoid derivatives were synthesized and tested for anti-α-glucosidase activities. All derivatives were confirmed using NMR and HRMS and exhibited excellent inhibitory effects on α-glucosidase. Derivative four exhibited the highest anti-α-glucosidase activity (IC(50): 15.71 ± 0.21 μM). Structu...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Hua, Zhong, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705736/
https://www.ncbi.nlm.nih.gov/pubmed/36458155
http://dx.doi.org/10.3389/fchem.2022.1041328
Descripción
Sumario:Six flavonoid derivatives were synthesized and tested for anti-α-glucosidase activities. All derivatives were confirmed using NMR and HRMS and exhibited excellent inhibitory effects on α-glucosidase. Derivative four exhibited the highest anti-α-glucosidase activity (IC(50): 15.71 ± 0.21 μM). Structure-activity relationship results showed that bromine group would be the most beneficial group to anti-α-glucosidase activity. Inhibitory mechnism and inhibition kinetics results showed derivative four was a reversible and mixed-type inhibitor. Molecular docking revealed that derivative four was tightly bind to the amino acid residues of active pocket of α-glucosidase and formed hydrogen bond, π-π stacking, and Pi-Donor hydrogen with α-glucosidase. Moreover, the physicochemical parameters of all derivatives were assessed using SwissADME software. This results also showed that the hybridization of flavonoid and phenylpropionic acid would be a useful strategy for the development of α-glucosidase inhibitors.